Properties

Label 2.43.ai_dy
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $( 1 - 4 x + 43 x^{2} )^{2}$
  $1 - 8 x + 102 x^{2} - 344 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.401344489543$, $\pm0.401344489543$
Angle rank:  $1$ (numerical)
Jacobians:  $68$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1600$ $3686400$ $6393601600$ $11679989760000$ $21604355049640000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $36$ $1990$ $80412$ $3416398$ $146959956$ $6321272470$ $271820333772$ $11688211063198$ $502592581004676$ $21611481725774950$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 68 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The isogeny class factors as 1.43.ae 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-39}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.a_cs$2$(not in LMFDB)
2.43.i_dy$2$(not in LMFDB)
2.43.e_abb$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.a_cs$2$(not in LMFDB)
2.43.i_dy$2$(not in LMFDB)
2.43.e_abb$3$(not in LMFDB)
2.43.a_acs$4$(not in LMFDB)
2.43.ae_abb$6$(not in LMFDB)