Invariants
| Base field: | $\F_{43}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $( 1 - 4 x + 43 x^{2} )^{2}$ | 
| $1 - 8 x + 102 x^{2} - 344 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.401344489543$, $\pm0.401344489543$ | 
| Angle rank: | $1$ (numerical) | 
| Jacobians: | $68$ | 
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1600$ | $3686400$ | $6393601600$ | $11679989760000$ | $21604355049640000$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $1990$ | $80412$ | $3416398$ | $146959956$ | $6321272470$ | $271820333772$ | $11688211063198$ | $502592581004676$ | $21611481725774950$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 68 curves (of which all are hyperelliptic):
- $y^2=36 x^6+42 x^5+30 x^4+42 x^3+33 x^2+19 x+13$
 - $y^2=10 x^6+35 x^5+30 x^4+17 x^3+33 x^2+38 x+26$
 - $y^2=13 x^5+29 x^4+27 x^3+29 x^2+13 x$
 - $y^2=5 x^6+32 x^5+20 x^4+7 x^3+26 x^2+30 x+37$
 - $y^2=21 x^6+14 x^5+40 x^4+7 x^3+40 x^2+14 x+21$
 - $y^2=13 x^6+20 x^5+x^4+8 x^3+x^2+20 x+13$
 - $y^2=16 x^6+11 x^5+41 x^4+x^3+39 x^2+41 x$
 - $y^2=38 x^6+33 x^4+33 x^2+38$
 - $y^2=18 x^6+20 x^4+20 x^2+18$
 - $y^2=4 x^6+7 x^5+25 x^4+16 x^3+16 x^2+36 x+14$
 - $y^2=22 x^6+42 x^5+33 x^4+14 x^3+33 x^2+42 x+22$
 - $y^2=20 x^6+19 x^5+5 x^4+42 x^3+8 x^2+10 x+2$
 - $y^2=26 x^6+19 x^5+11 x^3+19 x+26$
 - $y^2=26 x^6+16 x^5+17 x^4+23 x^3+17 x^2+16 x+26$
 - $y^2=12 x^6+8 x^5+42 x^4+13 x^3+42 x^2+8 x+12$
 - $y^2=20 x^6+5 x^5+19 x^4+13 x^3+19 x^2+5 x+20$
 - $y^2=14 x^6+21 x^5+34 x^4+12 x^3+34 x^2+21 x+14$
 - $y^2=32 x^6+5 x^5+12 x^4+21 x^3+2 x^2+30 x+32$
 - $y^2=29 x^6+35 x^5+12 x^4+31 x^3+2 x^2+38 x+29$
 - $y^2=23 x^6+22 x^4+22 x^2+23$
 - and 48 more
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.ae 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-39}) \)$)$ | 
Base change
This is a primitive isogeny class.