Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 4 x + 31 x^{2} )^{2}$ |
| $1 + 8 x + 78 x^{2} + 248 x^{3} + 961 x^{4}$ | |
| Frobenius angles: | $\pm0.616954024641$, $\pm0.616954024641$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $25$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1296$ | $1016064$ | $869306256$ | $852534595584$ | $820219585554576$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $40$ | $1054$ | $29176$ | $923134$ | $28649800$ | $887433118$ | $27512256280$ | $852894656254$ | $26439618778216$ | $819628188327454$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 25 curves (of which all are hyperelliptic):
- $y^2=8 x^6+30 x^4+30 x^2+8$
- $y^2=4 x^6+21 x^5+15 x^4+29 x^3+15 x^2+21 x+4$
- $y^2=3 x^6+24 x^5+23 x^4+3 x^3+23 x^2+24 x+12$
- $y^2=19 x^6+15 x^5+27 x^4+4 x^3+27 x^2+15 x+19$
- $y^2=3 x^6+24 x^4+24 x^2+3$
- $y^2=21 x^6+27 x^4+27 x^2+21$
- $y^2=x^6+28 x^3+4$
- $y^2=30 x^5+24 x^4+22 x^3+24 x^2+30 x$
- $y^2=6 x^6+16 x^5+18 x^4+22 x^3+3 x^2+28 x$
- $y^2=8 x^6+8 x^5+29 x^4+23 x^3+30 x^2+2 x+1$
- $y^2=10 x^6+30 x^5+26 x^4+5 x^3+24 x^2+3 x+20$
- $y^2=8 x^6+7 x^5+27 x^4+17 x^3+24 x+28$
- $y^2=7 x^6+11 x^5+3 x^4+8 x^3+3 x^2+11 x+7$
- $y^2=11 x^6+21 x^5+20 x^4+26 x^3+20 x^2+21 x+11$
- $y^2=25 x^6+15 x^5+8 x^4+13 x^3+7 x^2+11 x+7$
- $y^2=24 x^6+28 x^5+3 x^4+28 x^3+19 x^2+25 x+17$
- $y^2=10 x^6+29 x^5+6 x^4+12 x^3+6 x^2+29 x+10$
- $y^2=12 x^6+20 x^5+8 x^3+2 x+24$
- $y^2=x^6+9 x^3+16$
- $y^2=12 x^5+25 x^4+18 x^3+24 x^2+16 x+18$
- $y^2=x^6+x^3+2$
- $y^2=x^6+4$
- $y^2=10 x^6+6 x^5+8 x^4+6 x^3+8 x^2+6 x+10$
- $y^2=13 x^6+5 x^5+20 x^4+14 x^3+6 x^2+25 x+15$
- $y^2=x^6+20 x^3+2$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$| The isogeny class factors as 1.31.e 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.