Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 8 x + 79 x^{2} )^{2}$ |
| $1 + 16 x + 222 x^{2} + 1264 x^{3} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.648588554586$, $\pm0.648588554586$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $123$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 11$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7744$ | $40144896$ | $241725622336$ | $1517392925097984$ | $9468769458122818624$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $96$ | $6430$ | $490272$ | $38957374$ | $3077216736$ | $243085596766$ | $19203911189664$ | $1517108939120254$ | $119851594774831968$ | $9468276082081256350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 123 curves (of which all are hyperelliptic):
- $y^2=17 x^6+13 x^5+56 x^4+12 x^2+x+12$
- $y^2=56 x^6+52 x^5+63 x^4+63 x^3+63 x^2+52 x+56$
- $y^2=17 x^6+69 x^5+13 x^4+61 x^3+26 x^2+39 x+57$
- $y^2=3 x^6+3 x^3+66$
- $y^2=51 x^6+51 x^5+58 x^4+4 x^3+58 x^2+51 x+51$
- $y^2=35 x^6+37 x^5+75 x^4+19 x^3+75 x^2+37 x+35$
- $y^2=21 x^6+7 x^5+64 x^4+45 x^3+64 x^2+7 x+21$
- $y^2=71 x^6+12 x^5+19 x^4+8 x^3+13 x^2+24 x+14$
- $y^2=53 x^6+63 x^5+54 x^4+51 x^3+29 x^2+15 x+29$
- $y^2=51 x^6+77 x^5+65 x^4+71 x^3+55 x^2+57 x+25$
- $y^2=27 x^6+69 x^5+35 x^4+6 x^3+35 x^2+69 x+27$
- $y^2=23 x^6+16 x^5+2 x^4+4 x^3+72 x^2+26 x+29$
- $y^2=5 x^6+31 x^4+38 x^3+31 x^2+5$
- $y^2=64 x^6+60 x^5+46 x^4+56 x^3+45 x^2+28 x+67$
- $y^2=69 x^5+70 x^4+66 x^3+11 x^2+58 x+42$
- $y^2=73 x^6+42 x^5+31 x^4+48 x^3+6 x^2+x+8$
- $y^2=75 x^6+76 x^5+59 x^4+32 x^3+68 x^2+19 x+39$
- $y^2=53 x^6+71 x^5+14 x^4+9 x^3+14 x^2+71 x+53$
- $y^2=5 x^6+31 x^5+74 x^4+51 x^3+77 x^2+65 x+73$
- $y^2=8 x^6+32 x^5+40 x^4+73 x^3+16 x^2+62 x+22$
- and 103 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.i 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.