-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 7744, 'abvar_counts': [7744, 40144896, 241725622336, 1517392925097984, 9468769458122818624, 59091059192757595508736, 368790162664608279568519744, 2301619337127339541828771774464, 14364404914825650293442094697820736, 89648251971677790649106195924088754176], 'abvar_counts_str': '7744 40144896 241725622336 1517392925097984 9468769458122818624 59091059192757595508736 368790162664608279568519744 2301619337127339541828771774464 14364404914825650293442094697820736 89648251971677790649106195924088754176 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.648588554585722, 0.648588554585722], 'center_dim': 2, 'curve_count': 96, 'curve_counts': [96, 6430, 490272, 38957374, 3077216736, 243085596766, 19203911189664, 1517108939120254, 119851594774831968, 9468276082081256350], 'curve_counts_str': '96 6430 490272 38957374 3077216736 243085596766 19203911189664 1517108939120254 119851594774831968 9468276082081256350 ', 'curves': ['y^2=17*x^6+13*x^5+56*x^4+12*x^2+x+12', 'y^2=56*x^6+52*x^5+63*x^4+63*x^3+63*x^2+52*x+56', 'y^2=17*x^6+69*x^5+13*x^4+61*x^3+26*x^2+39*x+57', 'y^2=3*x^6+3*x^3+66', 'y^2=51*x^6+51*x^5+58*x^4+4*x^3+58*x^2+51*x+51', 'y^2=35*x^6+37*x^5+75*x^4+19*x^3+75*x^2+37*x+35', 'y^2=21*x^6+7*x^5+64*x^4+45*x^3+64*x^2+7*x+21', 'y^2=71*x^6+12*x^5+19*x^4+8*x^3+13*x^2+24*x+14', 'y^2=53*x^6+63*x^5+54*x^4+51*x^3+29*x^2+15*x+29', 'y^2=51*x^6+77*x^5+65*x^4+71*x^3+55*x^2+57*x+25', 'y^2=27*x^6+69*x^5+35*x^4+6*x^3+35*x^2+69*x+27', 'y^2=23*x^6+16*x^5+2*x^4+4*x^3+72*x^2+26*x+29', 'y^2=5*x^6+31*x^4+38*x^3+31*x^2+5', 'y^2=64*x^6+60*x^5+46*x^4+56*x^3+45*x^2+28*x+67', 'y^2=69*x^5+70*x^4+66*x^3+11*x^2+58*x+42', 'y^2=73*x^6+42*x^5+31*x^4+48*x^3+6*x^2+x+8', 'y^2=75*x^6+76*x^5+59*x^4+32*x^3+68*x^2+19*x+39', 'y^2=53*x^6+71*x^5+14*x^4+9*x^3+14*x^2+71*x+53', 'y^2=5*x^6+31*x^5+74*x^4+51*x^3+77*x^2+65*x+73', 'y^2=8*x^6+32*x^5+40*x^4+73*x^3+16*x^2+62*x+22', 'y^2=42*x^6+45*x^5+20*x^4+54*x^3+20*x^2+45*x+42', 'y^2=65*x^6+49*x^5+36*x^4+73*x^3+36*x^2+49*x+65', 'y^2=20*x^6+64*x^5+55*x^4+42*x^3+55*x^2+64*x+20', 'y^2=27*x^6+16*x^5+33*x^4+5*x^3+33*x^2+16*x+27', 'y^2=31*x^6+28*x^5+24*x^4+47*x^3+24*x^2+28*x+31', 'y^2=26*x^6+58*x^5+20*x^4+46*x^3+20*x^2+58*x+26', 'y^2=33*x^6+2*x^5+65*x^4+44*x^3+32*x^2+4*x+41', 'y^2=46*x^6+56*x^5+36*x^4+62*x^3+36*x^2+56*x+46', 'y^2=3*x^6+33*x^3+43', 'y^2=2*x^6+56*x^5+77*x^4+6*x^3+71*x^2+27*x+49', 'y^2=3*x^6+68*x^3+54', 'y^2=59*x^6+45*x^4+45*x^2+59', 'y^2=47*x^6+76*x^4+62*x^3+76*x^2+47', 'y^2=54*x^6+35*x^5+75*x^4+59*x^3+75*x^2+35*x+54', 'y^2=5*x^6+62*x^4+62*x^2+5', 'y^2=16*x^6+60*x^5+39*x^4+26*x^3+39*x^2+60*x+16', 'y^2=39*x^6+14*x^5+75*x^4+27*x^3+75*x^2+14*x+39', 'y^2=35*x^6+53*x^5+56*x^4+9*x^3+56*x^2+53*x+35', 'y^2=13*x^6+45*x^5+14*x^4+16*x^3+27*x^2+63*x+28', 'y^2=3*x^6+29*x^3+59', 'y^2=23*x^6+42*x^5+55*x^4+50*x^3+55*x^2+42*x+23', 'y^2=39*x^6+35*x^5+42*x^4+76*x^3+65*x^2+39*x+60', 'y^2=33*x^6+54*x^5+59*x^4+4*x^3+41*x^2+48*x+61', 'y^2=22*x^6+33*x^5+52*x^4+45*x^3+45*x^2+22*x+24', 'y^2=72*x^6+37*x^5+37*x^4+50*x^3+x^2+32*x+9', 'y^2=54*x^6+6*x^5+38*x^4+75*x^3+62*x^2+50*x+8', 'y^2=19*x^6+22*x^5+12*x^4+33*x^3+12*x^2+22*x+19', 'y^2=22*x^6+23*x^5+28*x^4+64*x^3+28*x^2+23*x+22', 'y^2=3*x^6+39*x^3+34', 'y^2=44*x^6+19*x^5+45*x^4+29*x^3+62*x^2+64*x+45', 'y^2=46*x^6+43*x^5+20*x^4+8*x^3+52*x^2+60*x+64', 'y^2=76*x^6+73*x^5+40*x^4+22*x^3+33*x^2+67*x+13', 'y^2=9*x^6+62*x^5+34*x^4+61*x^3+60*x^2+31*x+78', 'y^2=30*x^6+73*x^5+62*x^4+36*x^3+36*x^2+51*x+66', 'y^2=3*x^6+17*x^3+28', 'y^2=11*x^6+19*x^5+73*x^4+61*x^3+70*x^2+26*x+56', 'y^2=77*x^6+48*x^5+58*x^4+73*x^3+35*x^2+28*x+59', 'y^2=53*x^6+17*x^5+73*x^4+64*x^3+73*x^2+17*x+53', 'y^2=2*x^6+25*x^5+6*x^4+53*x^3+40*x^2+17', 'y^2=78*x^6+47*x^5+55*x^4+43*x^3+38*x^2+69*x+33', 'y^2=9*x^6+44*x^5+38*x^4+54*x^2+20*x+13', 'y^2=62*x^6+62*x^5+66*x^4+68*x^3+66*x^2+62*x+62', 'y^2=4*x^6+78*x^5+66*x^4+59*x^3+14*x^2+54*x+26', 'y^2=42*x^6+32*x^5+40*x^4+37*x^3+21*x^2+42*x+44', 'y^2=2*x^6+74*x^5+13*x^4+55*x^3+39*x^2+67*x+21', 'y^2=10*x^6+20*x^5+25*x^4+26*x^3+25*x^2+20*x+10', 'y^2=45*x^6+14*x^5+4*x^4+20*x^3+6*x^2+31*x+3', 'y^2=65*x^6+35*x^5+68*x^4+62*x^3+68*x^2+35*x+65', 'y^2=53*x^6+11*x^5+4*x^4+76*x^3+37*x^2+60*x+11', 'y^2=16*x^5+54*x^4+43*x^3+69*x^2+31*x', 'y^2=64*x^6+3*x^5+70*x^4+73*x^3+28*x^2+70*x+18', 'y^2=26*x^6+26*x^5+5*x^4+62*x^3+45*x^2+52*x+73', 'y^2=23*x^6+43*x^5+25*x^4+x^3+25*x^2+43*x+23', 'y^2=51*x^6+69*x^4+69*x^2+51', 'y^2=11*x^6+47*x^5+56*x^4+67*x^3+17*x^2+54*x+52', 'y^2=11*x^6+45*x^5+6*x^4+19*x^3+6*x^2+45*x+11', 'y^2=x^6+19*x^4+19*x^2+1', 'y^2=15*x^6+56*x^5+74*x^4+27*x^3+58*x^2+43*x+78', 'y^2=70*x^6+18*x^5+11*x^4+42*x^2+34*x+8', 'y^2=20*x^6+66*x^4+66*x^2+20', 'y^2=44*x^6+14*x^5+63*x^4+61*x^3+78*x^2+34*x+49', 'y^2=11*x^6+64*x^5+10*x^4+35*x^3+57*x^2+5*x+64', 'y^2=16*x^6+70*x^5+46*x^4+74*x^3+11*x^2+41*x+27', 'y^2=5*x^6+56*x^5+41*x^4+8*x^3+41*x^2+56*x+5', 'y^2=47*x^6+71*x^5+50*x^4+60*x^3+50*x^2+71*x+47', 'y^2=41*x^6+62*x^5+73*x^4+24*x^3+73*x^2+62*x+41', 'y^2=45*x^6+31*x^5+49*x^4+62*x^3+49*x^2+31*x+45', 'y^2=41*x^6+4*x^5+29*x^4+75*x^3+29*x^2+4*x+41', 'y^2=7*x^6+42*x^5+43*x^4+36*x^3+41*x^2+19*x+7', 'y^2=40*x^5+10*x^4+41*x^3+10*x^2+40*x', 'y^2=3*x^6+61*x^3+63', 'y^2=23*x^6+23*x^5+18*x^4+49*x^3+50*x^2+38*x+9', 'y^2=25*x^6+7*x^5+8*x^4+26*x^3+8*x^2+7*x+25', 'y^2=50*x^6+43*x^5+42*x^4+21*x^3+23*x^2+15*x+19', 'y^2=67*x^6+30*x^5+41*x^4+50*x^3+41*x^2+30*x+67', 'y^2=7*x^6+45*x^5+7*x^4+62*x^3+12*x^2+21*x+53', 'y^2=43*x^6+61*x^5+15*x^4+52*x^3+15*x^2+61*x+43', 'y^2=13*x^6+56*x^5+8*x^4+7*x^3+8*x^2+56*x+13', 'y^2=9*x^6+53*x^5+71*x^4+35*x^3+71*x^2+53*x+9', 'y^2=41*x^6+76*x^5+14*x^4+70*x^3+18*x^2+28*x+21', 'y^2=9*x^6+75*x^5+25*x^4+35*x^3+70*x^2+x+52', 'y^2=51*x^6+30*x^5+72*x^4+73*x^3+11*x^2+44*x+13', 'y^2=53*x^6+41*x^5+9*x^4+66*x^3+71*x^2+65*x+69', 'y^2=55*x^6+52*x^5+51*x^4+22*x^3+20*x^2+20*x+51', 'y^2=28*x^6+43*x^5+37*x^4+77*x^3+37*x^2+43*x+28', 'y^2=19*x^6+71*x^4+71*x^2+19', 'y^2=21*x^6+61*x^4+61*x^2+21', 'y^2=16*x^6+52*x^5+64*x^4+74*x^3+64*x^2+52*x+16', 'y^2=49*x^6+76*x^5+71*x^4+9*x^3+74*x^2+5*x+51', 'y^2=65*x^6+23*x^5+38*x^4+21*x^3+16*x^2+45*x+38', 'y^2=31*x^6+76*x^5+66*x^4+56*x^3+66*x^2+76*x+31', 'y^2=3*x^6+14*x^3+24', 'y^2=2*x^6+14*x^4+14*x^2+2', 'y^2=56*x^6+60*x^4+60*x^2+56', 'y^2=23*x^6+24*x^5+41*x^4+53*x^3+63*x^2+71*x+73', 'y^2=55*x^5+29*x^4+32*x^3+29*x^2+55*x', 'y^2=46*x^6+7*x^5+27*x^4+66*x^3+30*x^2+34*x+10', 'y^2=55*x^6+78*x^5+67*x^4+x^3+67*x^2+78*x+55', 'y^2=39*x^6+39*x^5+21*x^4+26*x^3+70*x^2+5*x+61', 'y^2=73*x^6+6*x^5+16*x^4+64*x^3+16*x^2+6*x+73', 'y^2=69*x^6+74*x^4+74*x^2+69', 'y^2=8*x^6+13*x^5+62*x^4+18*x^3+24*x^2+56*x+20', 'y^2=16*x^6+30*x^5+38*x^4+76*x^3+40*x^2+71*x+17'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.7.1'], 'geometric_splitting_field': '2.0.7.1', 'geometric_splitting_polynomials': [[2, -1, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 123, 'is_cyclic': False, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': False, 'jacobian_count': 123, 'label': '2.79.q_io', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [2, 11], 'number_fields': ['2.0.7.1'], 'p': 79, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 16, 222, 1264, 6241], 'poly_str': '1 16 222 1264 6241 ', 'primitive_models': [], 'q': 79, 'real_poly': [1, 16, 64], 'simple_distinct': ['1.79.i'], 'simple_factors': ['1.79.iA', '1.79.iB'], 'simple_multiplicities': [2], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.7.1', 'splitting_polynomials': [[2, -1, 1]], 'twist_count': 6, 'twists': [['2.79.aq_io', '2.6241.hg_bfny', 2], ['2.79.a_dq', '2.6241.hg_bfny', 2], ['2.79.ai_ap', '2.493039.aecm_gjcfm', 3], ['2.79.a_adq', '2.38950081.kum_hronpm', 4], ['2.79.i_ap', '2.243087455521.aebtqq_gmbwirlko', 6]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.79.q_io', 'extension_degree': 1, 'extension_label': '1.79.i', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.7.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.79.i', 'galois_group': '2T1', 'places': [['66', '1'], ['12', '1']]}