Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 53 x^{2} )( 1 + 2 x + 53 x^{2} )$ |
$1 + 102 x^{2} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.456138099416$, $\pm0.543861900584$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $78$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2912$ | $8479744$ | $22164562784$ | $62184201404416$ | $174887470525800032$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $3014$ | $148878$ | $7880910$ | $418195494$ | $22164764438$ | $1174711139838$ | $62259676161694$ | $3299763591802134$ | $174887470686087014$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 78 curves (of which all are hyperelliptic):
- $y^2=23 x^6+38 x^5+45 x^4+48 x^3+34 x^2+42 x+2$
- $y^2=46 x^6+23 x^5+37 x^4+43 x^3+15 x^2+31 x+4$
- $y^2=8 x^6+17 x^5+15 x^4+17 x^3+15 x^2+17 x+8$
- $y^2=16 x^6+34 x^5+30 x^4+34 x^3+30 x^2+34 x+16$
- $y^2=46 x^6+30 x^5+30 x^4+39 x^3+47 x^2+3 x+33$
- $y^2=39 x^6+7 x^5+7 x^4+25 x^3+41 x^2+6 x+13$
- $y^2=8 x^6+46 x^5+3 x^4+35 x^3+12 x^2+22 x+41$
- $y^2=16 x^6+39 x^5+6 x^4+17 x^3+24 x^2+44 x+29$
- $y^2=7 x^6+32 x^5+6 x^4+46 x^3+46 x^2+14 x+8$
- $y^2=14 x^6+11 x^5+12 x^4+39 x^3+39 x^2+28 x+16$
- $y^2=47 x^6+23 x^4+46 x^2+5$
- $y^2=8 x^6+42 x^4+31 x^2+11$
- $y^2=16 x^6+15 x^4+30 x^2+22$
- $y^2=39 x^6+50 x^4+47 x^2+47$
- $y^2=46 x^6+x^5+31 x^4+42 x^3+26 x^2+36 x+28$
- $y^2=39 x^6+2 x^5+9 x^4+31 x^3+52 x^2+19 x+3$
- $y^2=3 x^6+28 x^5+x^4+38 x^3+x^2+28 x+3$
- $y^2=6 x^6+3 x^5+2 x^4+23 x^3+2 x^2+3 x+6$
- $y^2=10 x^6+17 x^5+9 x^4+25 x^3+9 x^2+17 x+10$
- $y^2=20 x^6+34 x^5+18 x^4+50 x^3+18 x^2+34 x+20$
- and 58 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.ac $\times$ 1.53.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.dy 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-13}) \)$)$ |
Base change
This is a primitive isogeny class.