L(s) = 1 | + 2·3-s + 4-s − 2·7-s + 3·9-s + 2·12-s − 3·16-s − 4·21-s + 10·25-s + 4·27-s − 2·28-s + 3·36-s − 10·37-s + 12·41-s − 6·48-s + 3·49-s + 12·53-s − 6·63-s − 7·64-s + 8·67-s + 24·71-s − 28·73-s + 20·75-s + 5·81-s − 24·83-s − 4·84-s + 10·100-s + 36·101-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1/2·4-s − 0.755·7-s + 9-s + 0.577·12-s − 3/4·16-s − 0.872·21-s + 2·25-s + 0.769·27-s − 0.377·28-s + 1/2·36-s − 1.64·37-s + 1.87·41-s − 0.866·48-s + 3/7·49-s + 1.64·53-s − 0.755·63-s − 7/8·64-s + 0.977·67-s + 2.84·71-s − 3.27·73-s + 2.30·75-s + 5/9·81-s − 2.63·83-s − 0.436·84-s + 100-s + 3.58·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.168865726\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.168865726\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49699898659939797420674277281, −10.11665418914636478050690839411, −9.544943459220891083746956718582, −9.206614446968691492852702912865, −8.713139450412145341897346520697, −8.634276120067444558573660470230, −8.020519411130146054614365240305, −7.24161506675600663556993478998, −7.22695380700277982031539082137, −6.76666887233713438087991864066, −6.31228952920442840308811741312, −5.66441572403190959902235634610, −5.16430464129735883637214474798, −4.41446742503436189509795148223, −4.13342641843724607408356055279, −3.31176843234929359443587915644, −3.01064210701561253546048296174, −2.44119742557556288003545275496, −1.88299682718152455224553913205, −0.851756530858945826244410574704,
0.851756530858945826244410574704, 1.88299682718152455224553913205, 2.44119742557556288003545275496, 3.01064210701561253546048296174, 3.31176843234929359443587915644, 4.13342641843724607408356055279, 4.41446742503436189509795148223, 5.16430464129735883637214474798, 5.66441572403190959902235634610, 6.31228952920442840308811741312, 6.76666887233713438087991864066, 7.22695380700277982031539082137, 7.24161506675600663556993478998, 8.020519411130146054614365240305, 8.634276120067444558573660470230, 8.713139450412145341897346520697, 9.206614446968691492852702912865, 9.544943459220891083746956718582, 10.11665418914636478050690839411, 10.49699898659939797420674277281