Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 70 x^{2} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.347259928832$, $\pm0.652740071168$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{13})\) |
Galois group: | $C_2^2$ |
Jacobians: | $312$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3792$ | $14379264$ | $51519935952$ | $191777739411456$ | $713342911808111952$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $3862$ | $226982$ | $13850926$ | $844596302$ | $51519497542$ | $3142742836022$ | $191707355457118$ | $11694146092834142$ | $713342911953341302$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 312 curves (of which all are hyperelliptic):
- $y^2=42 x^6+51 x^5+12 x^4+53 x^3+29 x^2+60 x+43$
- $y^2=40 x^6+36 x^5+8 x^4+33 x^3+56 x^2+28 x+44$
- $y^2=19 x^6+11 x^5+16 x^4+5 x^3+51 x^2+56 x+27$
- $y^2=7 x^6+17 x^5+5 x^4+2 x^3+31 x^2+2 x+13$
- $y^2=15 x^6+14 x^5+35 x^4+41 x^3+52 x^2+56 x+43$
- $y^2=30 x^6+28 x^5+9 x^4+21 x^3+43 x^2+51 x+25$
- $y^2=21 x^6+32 x^5+5 x^4+21 x^3+2 x^2+46 x+46$
- $y^2=42 x^6+3 x^5+10 x^4+42 x^3+4 x^2+31 x+31$
- $y^2=41 x^6+46 x^5+18 x^4+51 x^3+35 x^2+36 x+33$
- $y^2=21 x^6+31 x^5+36 x^4+41 x^3+9 x^2+11 x+5$
- $y^2=16 x^5+60 x^4+54 x^3+42 x^2+57 x+2$
- $y^2=47 x^6+21 x^5+60 x^4+x^3+3 x^2+14 x+7$
- $y^2=33 x^6+42 x^5+59 x^4+2 x^3+6 x^2+28 x+14$
- $y^2=27 x^6+33 x^5+34 x^4+21 x^3+38 x^2+x+19$
- $y^2=58 x^6+31 x^5+24 x^4+14 x^3+14 x^2+57 x+13$
- $y^2=55 x^6+x^5+48 x^4+28 x^3+28 x^2+53 x+26$
- $y^2=13 x^6+36 x^5+21 x^4+27 x^3+51 x^2+9 x+36$
- $y^2=26 x^6+11 x^5+42 x^4+54 x^3+41 x^2+18 x+11$
- $y^2=31 x^6+16 x^5+39 x^4+39 x^3+23 x^2+8 x+59$
- $y^2=x^6+32 x^5+17 x^4+17 x^3+46 x^2+16 x+57$
- and 292 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{13})\). |
The base change of $A$ to $\F_{61^{2}}$ is 1.3721.cs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-39}) \)$)$ |
Base change
This is a primitive isogeny class.