Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 14 x^{2} + 289 x^{4}$ |
Frobenius angles: | $\pm0.317543719920$, $\pm0.682456280080$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{5})\) |
Galois group: | $C_2^2$ |
Jacobians: | $36$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $304$ | $92416$ | $24128176$ | $7039881216$ | $2015996319664$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $318$ | $4914$ | $84286$ | $1419858$ | $24118782$ | $410338674$ | $6975799678$ | $118587876498$ | $2015998738878$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=9 x^6+12 x^5+15 x^4+5 x^3+6 x^2+14 x+7$
- $y^2=10 x^6+2 x^5+11 x^4+15 x^3+x^2+8 x+4$
- $y^2=13 x^6+7 x^5+12 x^4+6 x^3+2 x^2+14 x$
- $y^2=5 x^6+4 x^5+2 x^4+x^3+6 x^2+8 x$
- $y^2=14 x^6+14 x^5+11 x^4+15 x^3+5 x^2+5 x+6$
- $y^2=14 x^5+7 x^4+6 x^3+15 x^2+6 x$
- $y^2=6 x^6+2 x^5+12 x^4+x^3+13 x^2+4 x+13$
- $y^2=13 x^6+12 x^5+7 x^4+7 x^3+4 x^2+12 x+10$
- $y^2=5 x^6+2 x^5+4 x^4+4 x^3+12 x^2+2 x+13$
- $y^2=15 x^5+x^4+2 x^3+10 x+12$
- $y^2=11 x^5+3 x^4+6 x^3+13 x+2$
- $y^2=2 x^6+9 x^5+14 x^4+11 x^3+10 x^2+15 x$
- $y^2=4 x^6+6 x^5+16 x^4+9 x^3+12 x^2+14 x+7$
- $y^2=12 x^5+11 x^4+14 x^3+3 x^2+2 x+9$
- $y^2=15 x^6+10 x^5+6 x^4+3 x^3+4 x^2+12 x+12$
- $y^2=2 x^6+2 x^5+15 x^4+9 x^3+16 x^2+7 x+13$
- $y^2=6 x^6+6 x^5+11 x^4+10 x^3+14 x^2+4 x+5$
- $y^2=4 x^6+6 x^5+x^4+15 x^3+11 x^2+15 x+4$
- $y^2=12 x^6+x^5+3 x^4+11 x^3+16 x^2+11 x+12$
- $y^2=12 x^6+12 x^5+x^4+7 x^3+x^2+5 x+7$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{2}}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{5})\). |
The base change of $A$ to $\F_{17^{2}}$ is 1.289.o 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-15}) \)$)$ |
Base change
This is a primitive isogeny class.