Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 71 x^{2} )^{2}$ |
| $1 - 24 x + 286 x^{2} - 1704 x^{3} + 5041 x^{4}$ | |
| Frobenius angles: | $\pm0.247758306964$, $\pm0.247758306964$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3600$ | $25401600$ | $128694387600$ | $646265881497600$ | $3255467816972250000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $5038$ | $359568$ | $25431838$ | $1804353648$ | $128100344398$ | $9095112059088$ | $645753429760318$ | $45848500075674288$ | $3255243550502050798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=56 x^6+60 x^5+57 x^4+10 x^3+10 x^2+48 x+39$
- $y^2=64 x^6+42 x^5+58 x^4+67 x^3+11 x^2+34 x+69$
- $y^2=27 x^6+38 x^5+6 x^4+32 x^3+8 x^2+36 x+64$
- $y^2=29 x^6+44 x^5+26 x^4+57 x^3+26 x^2+44 x+29$
- $y^2=9 x^6+6 x^5+6 x^4+19 x^3+48 x^2+30 x+13$
- $y^2=63 x^6+58 x^5+50 x^4+36 x^3+x^2+37 x+14$
- $y^2=62 x^6+30 x^4+30 x^2+62$
- $y^2=52 x^6+63 x^5+65 x^4+33 x^3+12 x^2+18 x+47$
- $y^2=20 x^6+24 x^5+48 x^4+37 x^3+27 x^2+32 x+15$
- $y^2=46 x^6+39 x^4+39 x^2+46$
- $y^2=22 x^6+48 x^5+51 x^4+44 x^3+26 x^2+30 x+62$
- $y^2=38 x^6+28 x^5+17 x^4+44 x^3+63 x^2+46 x+10$
- $y^2=42 x^6+29 x^5+13 x^4+59 x^3+13 x^2+29 x+42$
- $y^2=28 x^6+15 x^5+5 x^4+45 x^3+13 x^2+25 x+52$
- $y^2=49 x^6+53 x^5+68 x^4+22 x^3+59 x^2+67 x+12$
- $y^2=37 x^6+31 x^5+46 x^4+40 x^3+63 x^2+51 x+40$
- $y^2=39 x^6+53 x^5+12 x^4+57 x^3+12 x^2+53 x+39$
- $y^2=61 x^6+56 x^5+6 x^4+20 x^3+6 x^2+56 x+61$
- $y^2=28 x^6+7 x^5+34 x^4+65 x^3+28 x^2+33 x+21$
- $y^2=8 x^6+70 x^5+18 x^4+55 x^3+x^2+55 x+15$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The isogeny class factors as 1.71.am 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-35}) \)$)$ |
Base change
This is a primitive isogeny class.