Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 50 x^{2} + 961 x^{4}$ |
Frobenius angles: | $\pm0.100692558008$, $\pm0.899307441992$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{7})\) |
Galois group: | $C_2^2$ |
Jacobians: | $26$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $912$ | $831744$ | $887522832$ | $851825627136$ | $819628344225552$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $32$ | $862$ | $29792$ | $922366$ | $28629152$ | $887541982$ | $27512614112$ | $852894063358$ | $26439622160672$ | $819628401470302$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=15 x^6+8 x^5+22 x^4+6 x^3+8 x^2+27 x+22$
- $y^2=x^6+3 x^3+27$
- $y^2=5 x^6+17 x^5+6 x^4+28 x^3+4 x^2+14 x+18$
- $y^2=9 x^6+13 x^5+2 x^4+24 x^3+2 x^2+25 x+17$
- $y^2=2 x^6+3 x^5+21 x^4+29 x^3+2 x^2+17 x$
- $y^2=29 x^6+13 x^5+29 x^4+19 x^3+5 x^2+25 x+7$
- $y^2=4 x^6+10 x^5+20 x^4+22 x^3+26 x^2+8 x+21$
- $y^2=14 x^6+28 x^5+14 x^4+2 x^3+23 x^2+18 x+17$
- $y^2=x^6+17 x^3+15$
- $y^2=28 x^6+13 x^5+14 x^4+16 x^3+12 x+28$
- $y^2=27 x^5+10 x^4+3 x^3+15 x^2+24 x+28$
- $y^2=22 x^6+29 x^5+11 x^4+17 x^3+28 x^2+6 x+18$
- $y^2=x^6+12 x^3+23$
- $y^2=28 x^6+7 x^5+13 x^4+27 x^3+16 x^2+17 x+16$
- $y^2=12 x^6+23 x^5+5 x^4+24 x^3+6 x^2+17 x+19$
- $y^2=30 x^6+30 x^5+12 x^4+12 x^3+2 x^2+6 x+1$
- $y^2=12 x^6+28 x^5+10 x^4+29 x^3+16 x^2+20 x+9$
- $y^2=5 x^6+22 x^5+30 x^4+25 x^3+17 x^2+29 x+27$
- $y^2=x^6+22 x^3+15$
- $y^2=27 x^6+19 x^5+28 x^4+10 x^3+2 x^2+25 x+16$
- $y^2=16 x^6+8 x^5+8 x^4+13 x^3+29 x+4$
- $y^2=x^6+x^3+15$
- $y^2=x^6+x^3+29$
- $y^2=14 x^6+2 x^5+13 x^4+30 x^3+5 x^2+18 x+18$
- $y^2=28 x^6+29 x^5+2 x^4+20 x^3+21 x^2+12 x+3$
- $y^2=20 x^6+20 x^5+16 x^4+14 x^3+21 x^2+2 x+22$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{7})\). |
The base change of $A$ to $\F_{31^{2}}$ is 1.961.aby 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-21}) \)$)$ |
Base change
This is a primitive isogeny class.