Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 146 x^{2} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.114405196654$, $\pm0.885594803346$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{85})\) |
Galois group: | $C_2^2$ |
Jacobians: | $216$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9264$ | $85821696$ | $832973013936$ | $7836991485382656$ | $73742412704938598064$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $98$ | $9118$ | $912674$ | $88524286$ | $8587340258$ | $832974022942$ | $80798284478114$ | $7837433936014078$ | $760231058654565218$ | $73742412720384370078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 216 curves (of which all are hyperelliptic):
- $y^2=6 x^6+70 x^5+58 x^4+71 x+68$
- $y^2=30 x^6+59 x^5+96 x^4+64 x+49$
- $y^2=51 x^6+73 x^5+75 x^4+22 x^3+21 x^2+11 x+89$
- $y^2=92 x^6+50 x^5+53 x^4+32 x^3+38 x^2+8 x+48$
- $y^2=72 x^6+56 x^5+71 x^4+63 x^3+93 x^2+40 x+46$
- $y^2=79 x^6+13 x^5+73 x^4+92 x^3+52 x^2+60 x+86$
- $y^2=7 x^6+65 x^5+74 x^4+72 x^3+66 x^2+9 x+42$
- $y^2=54 x^6+80 x^5+41 x^4+66 x^3+15 x^2+79 x+84$
- $y^2=76 x^6+12 x^5+11 x^4+39 x^3+75 x^2+7 x+32$
- $y^2=85 x^6+62 x^5+74 x^4+78 x^3+69 x^2+14 x+71$
- $y^2=37 x^6+19 x^5+79 x^4+2 x^3+54 x^2+70 x+64$
- $y^2=64 x^6+4 x^5+87 x^4+51 x^3+22 x^2+31 x+34$
- $y^2=38 x^6+49 x^5+24 x^4+96 x^3+94 x^2+56 x+87$
- $y^2=85 x^6+45 x^5+32 x^4+39 x^3+57 x^2+55 x+78$
- $y^2=37 x^6+31 x^5+63 x^4+x^3+91 x^2+81 x+2$
- $y^2=57 x^6+90 x^5+62 x^4+68 x^3+69 x^2+77 x+61$
- $y^2=84 x^6+3 x^5+20 x^4+6 x^3+89 x^2+50 x+2$
- $y^2=32 x^6+15 x^5+3 x^4+30 x^3+57 x^2+56 x+10$
- $y^2=70 x^6+88 x^5+32 x^4+18 x^3+67 x^2+44 x+46$
- $y^2=61 x^6+55 x^5+19 x^4+6 x^3+86 x^2+5 x+7$
- and 196 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{2}}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{85})\). |
The base change of $A$ to $\F_{97^{2}}$ is 1.9409.afq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-255}) \)$)$ |
Base change
This is a primitive isogeny class.