Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$9216$ |
$47775744$ |
$325502198784$ |
$2253554325651456$ |
$15515608313292604416$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$108$ |
$6934$ |
$569268$ |
$47484910$ |
$3938930748$ |
$326939485318$ |
$27136070767620$ |
$2252292068511454$ |
$186940255589498124$ |
$15516041196923450614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 105 curves (of which all are hyperelliptic):
- $y^2=53 x^6+36 x^5+29 x^4+44 x^3+29 x^2+36 x+53$
- $y^2=26 x^6+x^5+6 x^4+4 x^3+6 x^2+x+26$
- $y^2=57 x^6+82 x^5+43 x^4+68 x^3+42 x^2+46 x+39$
- $y^2=78 x^6+6 x^5+5 x^4+12 x^3+5 x^2+6 x+78$
- $y^2=3 x^6+76 x^4+76 x^2+3$
- $y^2=72 x^6+59 x^5+23 x^4+43 x^3+23 x^2+59 x+72$
- $y^2=37 x^6+45 x^5+72 x^4+81 x^3+79 x^2+67 x+70$
- $y^2=19 x^6+78 x^5+36 x^4+19 x^3+75 x^2+10 x+73$
- $y^2=42 x^6+53 x^5+31 x^4+57 x^3+x^2+72 x+76$
- $y^2=36 x^6+36 x^5+54 x^4+16 x^3+45 x^2+25 x+7$
- $y^2=4 x^6+75 x^5+72 x^4+18 x^3+53 x^2+77 x+61$
- $y^2=30 x^6+76 x^5+36 x^4+2 x^3+7 x^2+60 x+33$
- $y^2=64 x^6+49 x^5+60 x^4+14 x^3+32 x^2+63 x+51$
- $y^2=50 x^6+35 x^5+5 x^4+59 x^3+5 x^2+35 x+50$
- $y^2=79 x^6+36 x^4+36 x^2+79$
- $y^2=42 x^6+55 x^4+55 x^2+42$
- $y^2=36 x^6+5 x^5+79 x^4+63 x^3+43 x^2+2 x+61$
- $y^2=77 x^6+38 x^4+38 x^2+77$
- $y^2=19 x^6+4 x^4+4 x^2+19$
- $y^2=15 x^6+27 x^5+3 x^4+70 x^3+40 x^2+69 x+50$
- and 85 more
- $y^2=14 x^5+55 x^4+70 x^3+55 x^2+14 x$
- $y^2=40 x^6+57 x^4+57 x^2+40$
- $y^2=23 x^6+31 x^5+20 x^4+74 x^3+71 x^2+51 x+3$
- $y^2=42 x^6+41 x^5+42 x^4+19 x^3+35 x^2+40 x+22$
- $y^2=54 x^6+21 x^5+81 x^4+22 x^3+7 x^2+29 x+71$
- $y^2=69 x^6+4 x^5+45 x^4+61 x^3+45 x^2+4 x+69$
- $y^2=75 x^6+70 x^5+22 x^4+4 x^3+79 x^2+46 x+75$
- $y^2=30 x^6+5 x^5+8 x^4+9 x^3+8 x^2+5 x+30$
- $y^2=14 x^6+66 x^5+40 x^4+56 x^3+40 x^2+66 x+14$
- $y^2=79 x^6+68 x^5+61 x^4+63 x^3+61 x^2+68 x+79$
- $y^2=4 x^5+74 x^4+56 x^3+32 x^2+27 x$
- $y^2=27 x^6+17 x^5+57 x^4+69 x^3+57 x^2+17 x+27$
- $y^2=69 x^6+6 x^5+18 x^4+17 x^3+58 x^2+14 x+12$
- $y^2=37 x^5+35 x^4+78 x^3+32 x^2+81 x$
- $y^2=70 x^6+42 x^5+61 x^4+56 x^3+31 x^2+22 x+59$
- $y^2=32 x^6+22 x^4+22 x^2+32$
- $y^2=37 x^6+48 x^5+2 x^4+9 x^3+2 x^2+48 x+37$
- $y^2=48 x^6+46 x^5+51 x^4+59 x^3+51 x^2+46 x+48$
- $y^2=75 x^6+5 x^5+8 x^4+38 x^3+8 x^2+5 x+75$
- $y^2=19 x^6+37 x^5+70 x^4+50 x^3+79 x^2+26 x+50$
- $y^2=37 x^6+67 x^5+9 x^4+41 x^3+69 x^2+74 x+61$
- $y^2=60 x^6+33 x^5+67 x^4+71 x^3+39 x^2+68 x+8$
- $y^2=30 x^6+69 x^5+56 x^4+70 x^3+47 x^2+12 x+25$
- $y^2=30 x^6+15 x^5+4 x^4+45 x^3+28 x^2+71 x+81$
- $y^2=x^6+56 x^5+4 x^4+78 x^3+7 x^2+47 x+30$
- $y^2=40 x^6+56 x^5+40 x^4+56 x^3+40 x^2+56 x+40$
- $y^2=36 x^6+77 x^4+77 x^2+36$
- $y^2=65 x^6+3 x^5+20 x^4+30 x^3+24 x^2+x+26$
- $y^2=23 x^6+26 x^5+53 x^4+19 x^3+53 x^2+26 x+23$
- $y^2=46 x^6+19 x^5+13 x^4+37 x^3+13 x^2+19 x+46$
- $y^2=25 x^6+33 x^5+70 x^4+17 x^3+17 x^2+25 x+77$
- $y^2=82 x^5+37 x^4+45 x^3+37 x^2+82 x$
- $y^2=60 x^6+62 x^5+42 x^4+74 x^3+42 x^2+62 x+60$
- $y^2=68 x^6+80 x^5+55 x^4+73 x^3+66 x^2+82 x+77$
- $y^2=66 x^6+5 x^5+76 x^4+41 x^3+76 x^2+5 x+66$
- $y^2=27 x^6+58 x^5+7 x^4+27 x^3+80 x^2+3 x+34$
- $y^2=27 x^6+58 x^5+55 x^4+61 x^3+39 x^2+67 x+30$
- $y^2=33 x^6+37 x^5+20 x^4+76 x^3+x^2+8 x+14$
- $y^2=4 x^6+18 x^5+15 x^4+75 x^3+15 x^2+18 x+4$
- $y^2=63 x^6+41 x^5+9 x^4+40 x^3+26 x^2+3 x+70$
- $y^2=74 x^6+31 x^5+35 x^4+42 x^3+35 x^2+31 x+74$
- $y^2=28 x^6+62 x^5+10 x^4+38 x^3+75 x^2+43 x+68$
- $y^2=82 x^6+37 x^5+80 x^4+36 x^3+9 x^2+6 x+31$
- $y^2=27 x^6+68 x^5+20 x^4+41 x^3+11 x^2+41 x+21$
- $y^2=3 x^6+17 x^5+81 x^4+20 x^3+81 x^2+17 x+3$
- $y^2=18 x^6+12 x^5+28 x^4+44 x^3+28 x^2+12 x+18$
- $y^2=62 x^6+9 x^5+14 x^4+74 x^3+50 x^2+3 x+58$
- $y^2=57 x^6+49 x^5+6 x^4+40 x^3+18 x^2+26 x+45$
- $y^2=42 x^6+7 x^5+27 x^4+82 x^3+7 x^2+4 x+80$
- $y^2=37 x^6+74 x^5+17 x^4+60 x^3+41 x^2+43 x+25$
- $y^2=5 x^6+37 x^5+67 x^4+37 x^3+67 x^2+37 x+5$
- $y^2=56 x^6+53 x^5+51 x^4+50 x^3+51 x^2+53 x+56$
- $y^2=23 x^6+61 x^5+19 x^4+5 x^3+19 x^2+61 x+23$
- $y^2=5 x^5+65 x^4+4 x^3+44 x^2+35 x$
- $y^2=70 x^6+9 x^5+60 x^4+25 x^3+60 x^2+9 x+70$
- $y^2=49 x^6+71 x^5+33 x^4+38 x^3+10 x^2+46 x+68$
- $y^2=80 x^6+33 x^5+45 x^4+54 x^3+45 x^2+33 x+80$
- $y^2=16 x^6+x^5+76 x^4+73 x^3+52 x^2+23 x+29$
- $y^2=50 x^6+4 x^5+76 x^4+36 x^3+32 x^2+26 x+32$
- $y^2=40 x^6+61 x^5+31 x^4+7 x^3+35 x^2+58 x+7$
- $y^2=4 x^5+76 x^4+2 x^3+14 x^2+16 x$
- $y^2=67 x^6+39 x^5+22 x^4+15 x^3+42 x^2+66 x+76$
- $y^2=40 x^6+54 x^5+54 x^4+67 x^3+54 x^2+54 x+40$
- $y^2=17 x^6+63 x^5+2 x^4+19 x^3+19 x^2+45 x+37$
- $y^2=38 x^6+42 x^5+20 x^4+58 x^3+20 x^2+42 x+38$
- $y^2=35 x^6+57 x^5+7 x^4+x^3+7 x^2+57 x+35$
- $y^2=56 x^5+61 x^4+61 x^3+75 x^2+76 x$
- $y^2=71 x^6+55 x^5+81 x^4+80 x^3+81 x^2+55 x+71$
- $y^2=9 x^6+46 x^4+46 x^2+9$
- $y^2=49 x^6+38 x^5+11 x^4+6 x^3+34 x^2+8 x+4$
- $y^2=58 x^6+x^5+37 x^4+37 x^2+x+58$
- $y^2=72 x^6+6 x^5+57 x^4+60 x^3+43 x^2+53 x+8$
- $y^2=73 x^6+78 x^5+67 x^4+80 x^3+67 x^2+78 x+73$
- $y^2=42 x^6+77 x^5+51 x^4+38 x^3+51 x^2+77 x+42$
- $y^2=16 x^6+47 x^5+82 x^4+61 x^3+60 x^2+46 x+37$
- $y^2=37 x^6+10 x^5+58 x^4+55 x^3+58 x^2+10 x+37$
- $y^2=51 x^6+10 x^4+10 x^2+51$
- $y^2=6 x^6+40 x^4+43 x^3+65 x^2+76$
- $y^2=45 x^6+72 x^5+37 x^4+44 x^3+37 x^2+72 x+45$
- $y^2=64 x^6+13 x^5+49 x^4+42 x^3+49 x^2+13 x+64$
- $y^2=48 x^6+63 x^5+40 x^4+42 x^3+40 x^2+63 x+48$
- $y^2=25 x^6+69 x^5+30 x^4+64 x^3+30 x^2+69 x+25$
- $y^2=74 x^6+25 x^4+4 x^3+29 x^2+53$
- $y^2=56 x^6+12 x^5+11 x^4+48 x^3+11 x^2+12 x+56$
- $y^2=26 x^6+67 x^5+68 x^4+63 x^3+36 x^2+34 x+33$
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$
Base change
This is a primitive isogeny class.
Twists