Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 34 x^{2} + 529 x^{4}$ |
Frobenius angles: | $\pm0.117618348478$, $\pm0.882381651522$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{5})\) |
Galois group: | $C_2^2$ |
Jacobians: | $16$ |
Isomorphism classes: | 66 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $496$ | $246016$ | $148050544$ | $78256705536$ | $41426522164336$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $462$ | $12168$ | $279646$ | $6436344$ | $148065198$ | $3404825448$ | $78312085438$ | $1801152661464$ | $41426533115022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=16 x^6+14 x^5+6 x^4+18 x^3+20 x^2+15 x+21$
- $y^2=5 x^6+21 x^5+13 x^4+18 x^3+5 x^2+8 x$
- $y^2=17 x^6+22 x^5+2 x^4+12 x^3+19 x^2+19 x+2$
- $y^2=11 x^6+14 x^5+5 x^4+19 x^3+3 x^2+17 x+9$
- $y^2=11 x^6+5 x^5+19 x^4+6 x^3+6 x^2+17 x+6$
- $y^2=18 x^6+21 x^5+6 x^4+7 x^3+15 x^2+22 x+11$
- $y^2=19 x^6+12 x^5+13 x^3+12 x+4$
- $y^2=19 x^6+13 x^5+9 x^4+3 x^3+21 x^2+12 x+2$
- $y^2=x^6+13 x^5+18 x^4+18 x^3+19 x^2+12 x+11$
- $y^2=15 x^6+3 x^5+15 x^4+6 x^3+17 x^2+20 x+7$
- $y^2=7 x^6+10 x^5+x^4+3 x^3+14 x^2+21 x+13$
- $y^2=7 x^5+15 x^4+13 x^3+8 x^2+7 x$
- $y^2=16 x^6+19 x^5+14 x^4+22 x^3+13 x^2+x+4$
- $y^2=10 x^6+9 x^5+5 x^4+21 x^3+19 x^2+11 x+7$
- $y^2=9 x^6+2 x^5+8 x^4+14 x^2+9 x+22$
- $y^2=6 x^6+19 x^5+5 x^4+x^3+2 x^2+12 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{5})\). |
The base change of $A$ to $\F_{23^{2}}$ is 1.529.abi 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-15}) \)$)$ |
Base change
This is a primitive isogeny class.