Invariants
| Base field: | $\F_{19}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 19 x^{2} )( 1 + 8 x + 19 x^{2} )$ |
| $1 - 26 x^{2} + 361 x^{4}$ | |
| Frobenius angles: | $\pm0.130073469147$, $\pm0.869926530853$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $15$ |
| Isomorphism classes: | 242 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $336$ | $112896$ | $47056464$ | $16995815424$ | $6131069159376$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $20$ | $310$ | $6860$ | $130414$ | $2476100$ | $47067046$ | $893871740$ | $16984080094$ | $322687697780$ | $6131072060950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):
- $y^2=x^6+13 x^3+12$
- $y^2=9 x^6+4 x^5+4 x^4+3 x^3+3 x^2+7 x+13$
- $y^2=3 x^6+10 x^5+3 x^3+13 x^2+13 x+10$
- $y^2=x^6+18$
- $y^2=12 x^5+x^3+3 x$
- $y^2=7 x^6+12 x^5+6 x^4+10 x^2+11 x+6$
- $y^2=8 x^6+17 x^5+x^4+x^3+8 x^2+6 x+16$
- $y^2=14 x^6+10 x^5+3 x^4+16 x^3+7 x^2+8 x+16$
- $y^2=7 x^5+8 x^4+5 x^3+8 x^2+16 x+6$
- $y^2=x^6+x^3+12$
- $y^2=7 x^6+13 x^5+5 x^4+18 x^3+13 x^2+17 x$
- $y^2=5 x^6+5 x^5+9 x^4+14 x^3+14 x^2+6 x+3$
- $y^2=x^6+3 x^3+8$
- $y^2=11 x^6+3 x^5+18 x^4+10 x^3+4 x^2+10 x+18$
- $y^2=8 x^5+10 x^4+11 x^3+x^2+7 x+5$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{2}}$.
Endomorphism algebra over $\F_{19}$| The isogeny class factors as 1.19.ai $\times$ 1.19.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{19^{2}}$ is 1.361.aba 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.