Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 43 x^{2} )( 1 + 8 x + 43 x^{2} )$ |
$1 + 22 x^{2} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.291171725172$, $\pm0.708828274828$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $300$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1872$ | $3504384$ | $6321251664$ | $11710193504256$ | $21611482596065232$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $1894$ | $79508$ | $3425230$ | $147008444$ | $6321140278$ | $271818611108$ | $11688193293214$ | $502592611936844$ | $21611482878846214$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 300 curves (of which all are hyperelliptic):
- $y^2=39 x^6+9 x^5+40 x^4+20 x^3+33 x^2+6 x+28$
- $y^2=31 x^6+27 x^5+34 x^4+17 x^3+13 x^2+18 x+41$
- $y^2=10 x^5+8 x^4+20 x^3+10 x^2+21 x+7$
- $y^2=30 x^5+24 x^4+17 x^3+30 x^2+20 x+21$
- $y^2=33 x^6+8 x^5+23 x^4+32 x^3+9 x^2+15 x$
- $y^2=5 x^6+23 x^5+5 x^4+22 x^3+41 x^2+6 x+21$
- $y^2=15 x^6+26 x^5+15 x^4+23 x^3+37 x^2+18 x+20$
- $y^2=37 x^6+29 x^5+24 x^4+19 x^2+25 x+8$
- $y^2=25 x^6+x^5+29 x^4+14 x^2+32 x+24$
- $y^2=24 x^6+42 x^5+4 x^4+23 x^3+12 x^2+4 x+28$
- $y^2=29 x^6+17 x^5+32 x^4+36 x^3+31 x^2+x+42$
- $y^2=x^6+8 x^5+10 x^4+22 x^3+7 x^2+3 x+40$
- $y^2=29 x^6+41 x^5+35 x^4+13 x^3+12 x^2+32 x+4$
- $y^2=x^6+37 x^5+19 x^4+39 x^3+36 x^2+10 x+12$
- $y^2=8 x^6+17 x^5+20 x^4+25 x^3+8 x^2+8 x+35$
- $y^2=24 x^6+8 x^5+17 x^4+32 x^3+24 x^2+24 x+19$
- $y^2=x^6+42$
- $y^2=27 x^5+30 x^3+3 x$
- $y^2=7 x^6+23 x^5+28 x^4+42 x^3+28 x^2+26 x+19$
- $y^2=21 x^6+26 x^5+41 x^4+40 x^3+41 x^2+35 x+14$
- and 280 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ai $\times$ 1.43.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.w 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.