Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 106 x^{2} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.0723995420184$, $\pm0.927600457982$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{14})\) |
Galois group: | $C_2^2$ |
Jacobians: | $26$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3376$ | $11397376$ | $42180449584$ | $146726900895744$ | $511116754225817776$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3270$ | $205380$ | $12108814$ | $714924300$ | $42180365526$ | $2488651484820$ | $146830449539614$ | $8662995818654940$ | $511116755150994150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=50 x^6+41 x^5+37 x^4+17 x^3+x^2+28 x+53$
- $y^2=49 x^6+28 x^5+32 x^4+47 x^3+10 x^2+18 x+50$
- $y^2=40 x^6+11 x^5+14 x^4+51 x^3+3 x^2+58 x+36$
- $y^2=33 x^6+44 x^5+32 x^4+35 x^3+39 x^2+42 x+47$
- $y^2=43 x^6+40 x^5+15 x^4+39 x^3+7 x^2+9 x+41$
- $y^2=43 x^6+2 x^5+28 x^4+53 x^3+18 x^2+52 x+36$
- $y^2=27 x^6+34 x^5+5 x^4+14 x^3+48 x^2+4 x+49$
- $y^2=36 x^6+38 x^5+52 x^4+58 x^3+3 x^2+13 x+24$
- $y^2=41 x^6+46 x^5+45 x^4+48 x^3+30 x^2+32 x+44$
- $y^2=53 x^6+51 x^5+19 x^4+12 x^3+40 x^2+35 x+24$
- $y^2=17 x^6+53 x^5+35 x^4+30 x^3+34 x^2+15 x+43$
- $y^2=9 x^6+45 x^5+42 x^4+56 x^3+29 x^2+42 x+50$
- $y^2=19 x^6+57 x^5+54 x^4+10 x^3+37 x^2+6 x+22$
- $y^2=7 x^6+33 x^5+57 x^4+38 x^3+50 x^2+49 x+50$
- $y^2=10 x^6+9 x^5+28 x^4+41 x^3+43 x^2+21 x+26$
- $y^2=32 x^6+49 x^5+39 x^4+12 x^3+25 x^2+36 x+26$
- $y^2=58 x^6+19 x^5+3 x^4+6 x^3+55 x^2+23 x+26$
- $y^2=57 x^6+38 x^5+6 x^4+12 x^3+51 x^2+46 x+52$
- $y^2=52 x^6+24 x^5+55 x^4+2 x^3+49 x^2+32 x+16$
- $y^2=17 x^6+7 x^5+4 x^4+58 x^3+50 x^2+17 x+23$
- $y^2=4 x^6+7 x^5+42 x^4+32 x^3+15 x^2+3 x+56$
- $y^2=13 x^6+41 x^5+14 x^4+8 x^3+15 x+16$
- $y^2=39 x^6+8 x^5+54 x^4+32 x^3+57 x^2+6 x+53$
- $y^2=38 x^6+10 x^5+28 x^4+9 x^3+31 x^2+10 x+21$
- $y^2=13 x^6+26 x^5+11 x^4+48 x^3+14 x^2+36 x+48$
- $y^2=17 x^6+55 x^5+12 x^4+38 x^3+26 x^2+28 x+58$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{14})\). |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.aec 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-42}) \)$)$ |
Base change
This is a primitive isogeny class.