L(s) = 1 | − 2·5-s − 3·25-s + 4·29-s + 8·43-s − 8·47-s − 49-s − 2·53-s + 8·67-s − 24·71-s − 10·73-s + 14·97-s − 18·101-s − 5·121-s + 10·125-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 6·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 3/5·25-s + 0.742·29-s + 1.21·43-s − 1.16·47-s − 1/7·49-s − 0.274·53-s + 0.977·67-s − 2.84·71-s − 1.17·73-s + 1.42·97-s − 1.79·101-s − 0.454·121-s + 0.894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.664·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.461·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.439066662257424695112800861791, −7.956436563059469962811587031596, −7.58602992349881920685979934493, −7.20288572346483026200271277989, −6.61737794822918205966998712942, −6.13482733734652566668429030948, −5.65157018566792001471232564127, −5.05477985426488982718417601378, −4.37843421879350425656424477814, −4.17761849076382515525602931682, −3.40001952647623779468470812883, −2.94473239580093011932541074185, −2.13908420032515843764991325320, −1.22054092829665517274409188645, 0,
1.22054092829665517274409188645, 2.13908420032515843764991325320, 2.94473239580093011932541074185, 3.40001952647623779468470812883, 4.17761849076382515525602931682, 4.37843421879350425656424477814, 5.05477985426488982718417601378, 5.65157018566792001471232564127, 6.13482733734652566668429030948, 6.61737794822918205966998712942, 7.20288572346483026200271277989, 7.58602992349881920685979934493, 7.956436563059469962811587031596, 8.439066662257424695112800861791