Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 3 x + 73 x^{2} )( 1 + 13 x + 73 x^{2} )$ |
$1 + 10 x + 107 x^{2} + 730 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.443825842026$, $\pm0.775177233176$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $144$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6177$ | $29013369$ | $151326814464$ | $806517374186601$ | $4297305446557943457$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $5444$ | $388998$ | $28400260$ | $2072917044$ | $151334962958$ | $11047406322708$ | $806460037102084$ | $58871586707030934$ | $4297625825956332164$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=30 x^6+65 x^5+63 x^4+28 x^3+65 x^2+57 x+8$
- $y^2=18 x^6+4 x^5+56 x^4+51 x^3+66 x^2+37 x+55$
- $y^2=58 x^6+67 x^5+26 x^4+66 x^3+22 x^2+36$
- $y^2=61 x^6+39 x^5+71 x^4+33 x^3+66 x^2+45 x+38$
- $y^2=12 x^6+24 x^5+2 x^4+21 x^3+30 x^2+41 x+64$
- $y^2=10 x^6+31 x^5+69 x^4+62 x^3+23 x^2+59 x+65$
- $y^2=18 x^6+27 x^5+70 x^4+13 x^3+49 x^2+18 x+57$
- $y^2=15 x^6+23 x^5+29 x^4+42 x^3+41 x^2+40 x+71$
- $y^2=20 x^6+5 x^5+24 x^4+9 x^3+49 x^2+5 x+53$
- $y^2=71 x^6+28 x^5+24 x^4+18 x^3+18 x^2+16 x+2$
- $y^2=21 x^6+26 x^5+66 x^4+16 x^3+30 x^2+3 x+65$
- $y^2=67 x^6+25 x^5+13 x^4+11 x^3+61 x^2+70 x+56$
- $y^2=x^6+63 x^5+12 x^4+2 x^3+56 x^2+66 x+67$
- $y^2=10 x^6+23 x^5+48 x^4+22 x^3+49 x^2+24 x+17$
- $y^2=63 x^6+54 x^5+57 x^4+15 x^3+50 x^2+3 x+51$
- $y^2=56 x^6+69 x^5+49 x^4+46 x^3+49 x^2+31 x+29$
- $y^2=8 x^6+56 x^5+46 x^4+35 x^3+4 x^2+53 x+46$
- $y^2=69 x^6+15 x^5+47 x^4+40 x^3+5 x^2+20 x+55$
- $y^2=28 x^6+52 x^5+21 x^4+27 x^3+69 x^2+8 x+64$
- $y^2=7 x^6+67 x^5+64 x^4+39 x^3+37 x^2+50 x+10$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.ad $\times$ 1.73.n and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.aq_hd | $2$ | (not in LMFDB) |
2.73.ak_ed | $2$ | (not in LMFDB) |
2.73.q_hd | $2$ | (not in LMFDB) |