Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - x + 53 x^{2} )( 1 + 3 x + 53 x^{2} )$ |
$1 + 2 x + 103 x^{2} + 106 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.478121163875$, $\pm0.566057977562$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $72$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3021$ | $8473905$ | $22121115408$ | $62187150036825$ | $174896437664278221$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $56$ | $3012$ | $148586$ | $7881284$ | $418216936$ | $22164729174$ | $1174709990440$ | $62259678365956$ | $3299763635037698$ | $174887470607719332$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=11 x^6+45 x^5+33 x^4+26 x^3+23 x^2+36 x+21$
- $y^2=26 x^6+7 x^5+47 x^4+23 x^3+18 x^2+x+16$
- $y^2=31 x^6+17 x^5+7 x^4+28 x^3+36 x^2+29 x+41$
- $y^2=x^6+11 x^5+32 x^4+20 x^3+39 x^2+52 x+16$
- $y^2=25 x^6+19 x^5+9 x^4+3 x^3+x^2+48 x+47$
- $y^2=x^6+10 x^5+45 x^4+44 x^3+25 x^2+43 x+51$
- $y^2=2 x^6+7 x^5+11 x^4+48 x^3+x^2+4 x+18$
- $y^2=9 x^6+50 x^5+19 x^4+41 x^3+x^2+21 x+31$
- $y^2=39 x^6+45 x^5+17 x^4+13 x^3+26 x^2+12 x+50$
- $y^2=16 x^6+51 x^5+3 x^4+3 x^3+51 x^2+7 x+46$
- $y^2=47 x^6+25 x^5+40 x^4+23 x^3+42 x^2+11 x+25$
- $y^2=46 x^6+2 x^5+32 x^4+10 x^3+8 x^2+22 x+41$
- $y^2=21 x^6+45 x^5+2 x^4+36 x^3+18 x^2+41 x+45$
- $y^2=43 x^6+22 x^5+45 x^4+7 x^3+31 x^2+14 x+9$
- $y^2=8 x^6+5 x^5+31 x^4+39 x^3+25 x^2+3 x+1$
- $y^2=29 x^6+36 x^5+23 x^4+27 x^3+49 x^2+2 x+13$
- $y^2=42 x^6+x^5+50 x^4+43 x^3+37 x^2+45 x+16$
- $y^2=44 x^6+47 x^5+37 x^4+33 x^3+13 x^2+44 x+50$
- $y^2=48 x^6+16 x^5+22 x^4+24 x^3+25 x^2+16 x+39$
- $y^2=8 x^6+16 x^5+15 x^4+6 x^3+40 x^2+49 x+30$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.ab $\times$ 1.53.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ae_ef | $2$ | (not in LMFDB) |
2.53.ac_dz | $2$ | (not in LMFDB) |
2.53.e_ef | $2$ | (not in LMFDB) |