Properties

Label 2.53.c_dz
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 - x + 53 x^{2} )( 1 + 3 x + 53 x^{2} )$
  $1 + 2 x + 103 x^{2} + 106 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.478121163875$, $\pm0.566057977562$
Angle rank:  $2$ (numerical)
Jacobians:  $72$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3021$ $8473905$ $22121115408$ $62187150036825$ $174896437664278221$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $56$ $3012$ $148586$ $7881284$ $418216936$ $22164729174$ $1174709990440$ $62259678365956$ $3299763635037698$ $174887470607719332$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.ab $\times$ 1.53.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ae_ef$2$(not in LMFDB)
2.53.ac_dz$2$(not in LMFDB)
2.53.e_ef$2$(not in LMFDB)