Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 47 x^{2} )( 1 + 8 x + 47 x^{2} )$ |
$1 + 8 x + 94 x^{2} + 376 x^{3} + 2209 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.698301488982$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $270$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2688$ | $5160960$ | $10715467392$ | $23806889164800$ | $52599318005286528$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $56$ | $2334$ | $103208$ | $4878782$ | $229345816$ | $10779251166$ | $506624456968$ | $23811274285438$ | $1119130431222776$ | $52599133152557214$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 270 curves (of which all are hyperelliptic):
- $y^2=6 x^6+27 x^5+20 x^4+14 x^2+40 x+6$
- $y^2=42 x^6+24 x^5+14 x^4+28 x^3+31 x^2+10 x+44$
- $y^2=44 x^5+27 x^4+27 x^3+28 x^2+32 x+3$
- $y^2=38 x^6+26 x^5+4 x^4+45 x^3+46 x^2+32 x+46$
- $y^2=5 x^6+4 x^5+37 x^4+44 x^3+36 x^2+4 x+10$
- $y^2=32 x^6+23 x^5+19 x^4+14 x^3+15 x^2+31 x+2$
- $y^2=26 x^6+19 x^5+7 x^4+18 x^3+7 x^2+19 x+26$
- $y^2=36 x^6+30 x^5+2 x^4+40 x^3+2 x^2+30 x+36$
- $y^2=21 x^6+14 x^5+18 x^4+5 x^3+18 x^2+14 x+21$
- $y^2=28 x^6+40 x^5+15 x^4+18 x^3+10 x^2+23 x+17$
- $y^2=23 x^6+6 x^5+3 x^4+10 x^3+3 x^2+6 x+23$
- $y^2=28 x^5+46 x^4+46 x^3+25 x^2+36 x+34$
- $y^2=7 x^6+28 x^5+5 x^4+46 x^3+22 x^2+18 x+11$
- $y^2=33 x^6+3 x^5+5 x^4+10 x^3+11 x^2+7 x+19$
- $y^2=29 x^5+46 x^4+42 x^3+46 x^2+29 x$
- $y^2=39 x^6+36 x^5+16 x^4+3 x^2+7 x+34$
- $y^2=27 x^6+16 x^5+6 x^4+38 x^3+41 x^2+35 x+15$
- $y^2=15 x^6+17 x^4+34 x^3+7 x^2+46$
- $y^2=34 x^6+26 x^5+37 x^4+10 x^3+37 x^2+26 x+34$
- $y^2=31 x^6+30 x^5+40 x^4+11 x^3+15 x^2+38 x+30$
- and 250 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The isogeny class factors as 1.47.a $\times$ 1.47.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.be $\times$ 1.2209.dq. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.ai_dq | $2$ | (not in LMFDB) |