Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 74 x^{2} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.142117056106$, $\pm0.857882943894$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{3}, \sqrt{-11})\) |
Galois group: | $C_2^2$ |
Jacobians: | $206$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3408$ | $11614464$ | $42180901200$ | $146866476847104$ | $511116753651134928$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3334$ | $205380$ | $12120334$ | $714924300$ | $42181268758$ | $2488651484820$ | $146830481657374$ | $8662995818654940$ | $511116754001628454$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 206 curves (of which all are hyperelliptic):
- $y^2=31 x^6+3 x^5+41 x^4+4 x^3+55 x+54$
- $y^2=3 x^6+6 x^5+23 x^4+8 x^3+51 x+49$
- $y^2=30 x^6+x^5+19 x^4+22 x^3+6 x^2+32 x$
- $y^2=19 x^6+11 x^5+27 x^4+30 x^3+49 x^2+41 x+7$
- $y^2=17 x^6+52 x^5+27 x^4+21 x^3+26 x^2+21 x+16$
- $y^2=34 x^6+45 x^5+54 x^4+42 x^3+52 x^2+42 x+32$
- $y^2=41 x^6+14 x^5+9 x^4+26 x^3+58 x^2+6 x+43$
- $y^2=x^6+x^3+54$
- $y^2=56 x^6+43 x^5+23 x^4+2 x^3+12 x^2+25 x+52$
- $y^2=53 x^6+27 x^5+46 x^4+4 x^3+24 x^2+50 x+45$
- $y^2=47 x^6+10 x^5+4 x^4+36 x^3+43 x^2+38 x+41$
- $y^2=35 x^6+20 x^5+8 x^4+13 x^3+27 x^2+17 x+23$
- $y^2=29 x^6+21 x^5+41 x^4+18 x^3+8 x^2+26 x+24$
- $y^2=20 x^6+18 x^5+47 x^4+2 x^3+9 x^2+7 x+43$
- $y^2=44 x^6+50 x^5+30 x^4+49 x^3+51 x^2+56 x+21$
- $y^2=40 x^6+2 x^5+19 x^4+38 x^2+51 x+23$
- $y^2=21 x^6+4 x^5+38 x^4+17 x^2+43 x+46$
- $y^2=53 x^6+33 x^5+34 x^4+2 x^3+8 x^2+18 x+44$
- $y^2=47 x^6+7 x^5+9 x^4+4 x^3+16 x^2+36 x+29$
- $y^2=52 x^6+38 x^5+13 x^4+44 x^3+35 x^2+51 x+38$
- and 186 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-11})\). |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.acw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-33}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.a_cw | $4$ | (not in LMFDB) |
2.59.ay_jr | $12$ | (not in LMFDB) |
2.59.y_jr | $12$ | (not in LMFDB) |