Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 12 x + 71 x^{2} )^{2}$ |
| $1 + 24 x + 286 x^{2} + 1704 x^{3} + 5041 x^{4}$ | |
| Frobenius angles: | $\pm0.752241693036$, $\pm0.752241693036$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7056$ | $25401600$ | $127508983056$ | $646265881497600$ | $3255019299989177616$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $96$ | $5038$ | $356256$ | $25431838$ | $1804105056$ | $128100344398$ | $9095128257696$ | $645753429760318$ | $45848501361223776$ | $3255243550502050798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=37 x^6+65 x^5+44 x^4+70 x^3+70 x^2+52 x+60$
- $y^2=22 x^6+10 x^5+51 x^4+43 x^3+6 x^2+25 x+57$
- $y^2=47 x^6+53 x^5+42 x^4+11 x^3+56 x^2+39 x+22$
- $y^2=65 x^6+57 x^5+24 x^4+69 x^3+24 x^2+57 x+65$
- $y^2=52 x^6+11 x^5+11 x^4+23 x^3+17 x^2+55 x+12$
- $y^2=15 x^6+51 x^5+66 x^4+39 x^3+7 x^2+46 x+27$
- $y^2=19 x^6+55 x^4+55 x^2+19$
- $y^2=9 x^6+15 x^5+29 x^4+18 x^3+13 x^2+55 x+45$
- $y^2=69 x^6+26 x^5+52 x^4+46 x^3+47 x^2+11 x+34$
- $y^2=37 x^6+36 x^4+36 x^2+37$
- $y^2=12 x^6+52 x^5+2 x^4+24 x^3+40 x^2+68 x+8$
- $y^2=46 x^6+4 x^5+43 x^4+57 x^3+9 x^2+37 x+42$
- $y^2=6 x^6+65 x^5+12 x^4+49 x^3+12 x^2+65 x+6$
- $y^2=4 x^6+63 x^5+21 x^4+47 x^3+12 x^2+34 x+48$
- $y^2=7 x^6+38 x^5+30 x^4+64 x^3+49 x^2+40 x+22$
- $y^2=46 x^6+4 x^5+38 x^4+67 x^3+15 x^2+2 x+67$
- $y^2=36 x^6+38 x^5+22 x^4+69 x^3+22 x^2+38 x+36$
- $y^2=29 x^6+8 x^5+11 x^4+13 x^3+11 x^2+8 x+29$
- $y^2=4 x^6+x^5+15 x^4+60 x^3+4 x^2+25 x+3$
- $y^2=56 x^6+64 x^5+55 x^4+30 x^3+7 x^2+30 x+34$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The isogeny class factors as 1.71.m 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-35}) \)$)$ |
Base change
This is a primitive isogeny class.