Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 62 x^{2} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.386448235704$, $\pm0.613551764296$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{5})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $227$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1744$ | $3041536$ | $4750029904$ | $7982207078400$ | $13422659099124304$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $42$ | $1806$ | $68922$ | $2824798$ | $115856202$ | $4749955566$ | $194754273882$ | $7984936067518$ | $327381934393962$ | $13422658888096206$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 227 curves (of which all are hyperelliptic):
- $y^2=18 x^6+5 x^5+22 x^4+5 x^3+9 x^2+16 x+34$
- $y^2=22 x^6+5 x^5+40 x^4+34 x^3+12 x^2+19 x+34$
- $y^2=9 x^6+30 x^5+35 x^4+40 x^3+31 x^2+32 x+40$
- $y^2=32 x^6+x^5+5 x^4+13 x^3+8 x^2+8 x+25$
- $y^2=28 x^6+6 x^5+30 x^4+37 x^3+7 x^2+7 x+27$
- $y^2=19 x^6+16 x^5+29 x^4+2 x^3+8 x^2+24 x+33$
- $y^2=32 x^6+14 x^5+10 x^4+12 x^3+7 x^2+21 x+34$
- $y^2=6 x^6+33 x^5+2 x^4+4 x^3+23 x^2+29 x+26$
- $y^2=40 x^6+37 x^5+25 x^4+28 x^3+33 x^2+9 x+37$
- $y^2=35 x^6+17 x^5+27 x^4+4 x^3+34 x^2+13 x+17$
- $y^2=7 x^6+13 x^4+30 x^3+35 x^2+23 x+13$
- $y^2=x^6+37 x^4+16 x^3+5 x^2+15 x+37$
- $y^2=10 x^6+23 x^5+x^4+29 x^3+25 x^2+15 x+7$
- $y^2=19 x^6+15 x^5+6 x^4+10 x^3+27 x^2+8 x+1$
- $y^2=22 x^6+17 x^5+27 x^4+38 x^2+4 x+39$
- $y^2=8 x^6+12 x^5+3 x^4+38 x^3+18 x^2+11 x+38$
- $y^2=7 x^6+31 x^5+18 x^4+23 x^3+26 x^2+25 x+23$
- $y^2=37 x^6+29 x^5+9 x^4+25 x^3+33 x^2+10 x+1$
- $y^2=17 x^6+10 x^5+13 x^4+27 x^3+34 x^2+19 x+6$
- $y^2=5 x^6+6 x^5+12 x^4+34 x^3+31 x^2+x+19$
- and 207 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{2}}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{5})\). |
| The base change of $A$ to $\F_{41^{2}}$ is 1.1681.ck 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$ |
Base change
This is a primitive isogeny class.