Properties

Label 2.43.ai_di
Base field $\F_{43}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $( 1 - 8 x + 43 x^{2} )( 1 + 43 x^{2} )$
  $1 - 8 x + 86 x^{2} - 344 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.291171725172$, $\pm0.5$
Angle rank:  $1$ (numerical)
Jacobians:  $120$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1584$ $3624192$ $6362866224$ $11686540529664$ $21611975379605424$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $36$ $1958$ $80028$ $3418318$ $147011796$ $6321410678$ $271817575884$ $11688189947806$ $502592628513924$ $21611482890082118$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43^{2}}$.

Endomorphism algebra over $\F_{43}$
The isogeny class factors as 1.43.ai $\times$ 1.43.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{43}$
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.w $\times$ 1.1849.di. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.i_di$2$(not in LMFDB)
2.43.af_di$3$(not in LMFDB)
2.43.n_di$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.i_di$2$(not in LMFDB)
2.43.af_di$3$(not in LMFDB)
2.43.n_di$3$(not in LMFDB)
2.43.an_di$6$(not in LMFDB)
2.43.f_di$6$(not in LMFDB)