Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 43 x^{2} )( 1 + 43 x^{2} )$ |
$1 - 8 x + 86 x^{2} - 344 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.291171725172$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $120$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1584$ | $3624192$ | $6362866224$ | $11686540529664$ | $21611975379605424$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $1958$ | $80028$ | $3418318$ | $147011796$ | $6321410678$ | $271817575884$ | $11688189947806$ | $502592628513924$ | $21611482890082118$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=33 x^6+34 x^5+26 x^4+26 x^3+36 x^2+37 x+23$
- $y^2=25 x^6+16 x^5+27 x^4+13 x^3+27 x^2+16 x+25$
- $y^2=34 x^6+20 x^5+16 x^4+9 x^3+16 x^2+20 x+34$
- $y^2=10 x^6+13 x^5+11 x^4+29 x^3+12 x^2+3 x+2$
- $y^2=x^6+32 x^5+17 x^4+35 x^3+37 x^2+38 x+15$
- $y^2=33 x^6+4 x^5+41 x^4+13 x^3+11 x^2+35 x+19$
- $y^2=28 x^6+17 x^5+41 x^4+7 x^3+41 x^2+17 x+28$
- $y^2=22 x^6+33 x^5+21 x^4+18 x^3+27 x^2+20 x+34$
- $y^2=20 x^6+24 x^5+15 x^4+34 x^3+36 x^2+7 x+27$
- $y^2=31 x^6+28 x^5+32 x^4+4 x^3+33 x^2+37 x+23$
- $y^2=23 x^5+25 x^4+32 x^3+25 x^2+23 x$
- $y^2=30 x^6+13 x^5+19 x^4+13 x^3+8 x+36$
- $y^2=26 x^6+20 x^5+8 x^4+4 x^3+17 x^2+12 x+13$
- $y^2=11 x^6+21 x^5+13 x^4+28 x^3+41 x^2+15 x+21$
- $y^2=23 x^6+36 x^5+34 x^4+24 x^3+34 x^2+36 x+23$
- $y^2=2 x^6+32 x^5+29 x^4+9 x^3+12 x^2+15 x+41$
- $y^2=22 x^6+30 x^5+14 x^4+25 x^3+23 x^2+16 x+17$
- $y^2=31 x^6+21 x^5+21 x^4+35 x^3+4 x^2+11 x+38$
- $y^2=x^6+13 x^5+27 x^4+7 x^3+27 x^2+13 x+1$
- $y^2=27 x^6+8 x^5+32 x^4+7 x^3+5 x^2+8 x+10$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ai $\times$ 1.43.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.w $\times$ 1.1849.di. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.