Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 10 x^{2} + 1369 x^{4}$ |
| Frobenius angles: | $\pm0.228426571754$, $\pm0.771573428246$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{21})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $202$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1360$ | $1849600$ | $2565766480$ | $3522378240000$ | $4808584285454800$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1350$ | $50654$ | $1879438$ | $69343958$ | $2565806550$ | $94931877134$ | $3512473032478$ | $129961739795078$ | $4808584198491750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 202 curves (of which all are hyperelliptic):
- $y^2=35 x^6+23 x^5+16 x^4+14 x^3+33 x^2+12 x+31$
- $y^2=33 x^6+9 x^5+32 x^4+28 x^3+29 x^2+24 x+25$
- $y^2=22 x^6+13 x^5+18 x^4+33 x^3+34 x^2+24 x+16$
- $y^2=35 x^6+10 x^5+35 x^4+13 x^3+9 x^2+23 x+31$
- $y^2=33 x^6+20 x^5+33 x^4+26 x^3+18 x^2+9 x+25$
- $y^2=33 x^6+13 x^5+22 x^4+6 x^3+8 x^2+36 x+34$
- $y^2=29 x^6+26 x^5+7 x^4+12 x^3+16 x^2+35 x+31$
- $y^2=25 x^6+24 x^5+21 x^4+19 x^3+2 x^2+5 x+35$
- $y^2=26 x^6+23 x^5+24 x^4+33 x^3+10 x^2+14 x+26$
- $y^2=15 x^6+9 x^5+11 x^4+29 x^3+20 x^2+28 x+15$
- $y^2=28 x^6+30 x^5+28 x^4+25 x^3+17 x^2+12 x+23$
- $y^2=19 x^6+23 x^5+19 x^4+13 x^3+34 x^2+24 x+9$
- $y^2=14 x^6+30 x^5+36 x^4+13 x^3+27 x^2+22 x+7$
- $y^2=19 x^6+x^5+24 x^4+4 x^3+17 x^2+18 x+33$
- $y^2=x^6+2 x^5+11 x^4+8 x^3+34 x^2+36 x+29$
- $y^2=14 x^6+23 x^5+28 x^4+28 x^3+32 x^2+24 x+36$
- $y^2=30 x^6+7 x^5+2 x^4+26 x^3+34 x^2+2 x+21$
- $y^2=23 x^6+14 x^5+4 x^4+15 x^3+31 x^2+4 x+5$
- $y^2=16 x^6+7 x^5+x^4+29 x^3+7 x^2+14 x+26$
- $y^2=32 x^6+14 x^5+2 x^4+21 x^3+14 x^2+28 x+15$
- and 182 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{21})\). |
| The base change of $A$ to $\F_{37^{2}}$ is 1.1369.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-21}) \)$)$ |
Base change
This is a primitive isogeny class.