Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 10 x^{2} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.236939860565$, $\pm0.763060139435$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-7}, \sqrt{33})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $336$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3712$ | $13778944$ | $51520484992$ | $191910706937856$ | $713342910989095552$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $62$ | $3702$ | $226982$ | $13860526$ | $844596302$ | $51520595622$ | $3142742836022$ | $191707260570718$ | $11694146092834142$ | $713342910315308502$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 336 curves (of which all are hyperelliptic):
- $y^2=7 x^6+32 x^5+14 x^4+42 x^3+51 x^2+17 x+11$
- $y^2=14 x^6+3 x^5+28 x^4+23 x^3+41 x^2+34 x+22$
- $y^2=57 x^6+39 x^5+38 x^4+37 x^3+53 x^2+15 x$
- $y^2=9 x^6+54 x^5+7 x^4+56 x^3+38 x^2+52 x$
- $y^2=18 x^6+47 x^5+14 x^4+51 x^3+15 x^2+43 x$
- $y^2=45 x^6+28 x^5+3 x^4+9 x^3+37 x^2+33 x+56$
- $y^2=29 x^6+56 x^5+6 x^4+18 x^3+13 x^2+5 x+51$
- $y^2=26 x^5+12 x^4+27 x^3+9 x^2+33 x+26$
- $y^2=52 x^5+24 x^4+54 x^3+18 x^2+5 x+52$
- $y^2=58 x^6+18 x^5+13 x^4+18 x^3+32 x^2+2 x+13$
- $y^2=55 x^6+36 x^5+26 x^4+36 x^3+3 x^2+4 x+26$
- $y^2=43 x^6+53 x^5+7 x^4+6 x^3+38 x^2+12 x+24$
- $y^2=25 x^6+45 x^5+14 x^4+12 x^3+15 x^2+24 x+48$
- $y^2=39 x^6+57 x^5+30 x^4+7 x^3+36 x^2+4 x+2$
- $y^2=12 x^6+59 x^5+55 x^4+21 x^3+3 x^2+30 x+29$
- $y^2=14 x^6+28 x^4+26 x^3+58 x^2+59 x+52$
- $y^2=28 x^6+56 x^4+52 x^3+55 x^2+57 x+43$
- $y^2=6 x^6+46 x^5+47 x^4+40 x^3+54 x^2+48 x+58$
- $y^2=12 x^6+31 x^5+33 x^4+19 x^3+47 x^2+35 x+55$
- $y^2=46 x^6+19 x^5+48 x^4+7 x^3+50 x^2+28 x+58$
- and 316 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-7}, \sqrt{33})\). |
| The base change of $A$ to $\F_{61^{2}}$ is 1.3721.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-231}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.a_k | $4$ | (not in LMFDB) |