Properties

Label 2.61.a_ak
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $1 - 10 x^{2} + 3721 x^{4}$
Frobenius angles:  $\pm0.236939860565$, $\pm0.763060139435$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-7}, \sqrt{33})\)
Galois group:  $C_2^2$
Jacobians:  $336$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3712$ $13778944$ $51520484992$ $191910706937856$ $713342910989095552$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $62$ $3702$ $226982$ $13860526$ $844596302$ $51520595622$ $3142742836022$ $191707260570718$ $11694146092834142$ $713342910315308502$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 336 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61^{2}}$.

Endomorphism algebra over $\F_{61}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-7}, \sqrt{33})\).
Endomorphism algebra over $\overline{\F}_{61}$
The base change of $A$ to $\F_{61^{2}}$ is 1.3721.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-231}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.a_k$4$(not in LMFDB)