| L(s) = 1 | − 6·11-s + 10·19-s − 4·31-s + 6·41-s + 10·49-s + 4·61-s + 24·71-s − 20·79-s + 30·89-s + 36·101-s + 20·109-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
| L(s) = 1 | − 1.80·11-s + 2.29·19-s − 0.718·31-s + 0.937·41-s + 10/7·49-s + 0.512·61-s + 2.84·71-s − 2.25·79-s + 3.17·89-s + 3.58·101-s + 1.91·109-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.658584102\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.658584102\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.589137796847909143080721868858, −8.453675128008026264056927023081, −7.76561490693609783976654679509, −7.68638636784890333635413854636, −7.26173247581483809731111499982, −7.21752622203494613406609226643, −6.43112939428577969932200477043, −6.08563354775183968873758104986, −5.62575007047956842880667036897, −5.30154898817781237797536100529, −5.10028792962733106596879404479, −4.67411892125176430829076338546, −4.08060071447092274663169061553, −3.61294930196898053259364605203, −3.07744435427766439870306567576, −2.95957191182816646295812758825, −2.08586742798045958010227594424, −2.05821291516227602892654943336, −0.895265530485117890000205121204, −0.62261230582933946091806861167,
0.62261230582933946091806861167, 0.895265530485117890000205121204, 2.05821291516227602892654943336, 2.08586742798045958010227594424, 2.95957191182816646295812758825, 3.07744435427766439870306567576, 3.61294930196898053259364605203, 4.08060071447092274663169061553, 4.67411892125176430829076338546, 5.10028792962733106596879404479, 5.30154898817781237797536100529, 5.62575007047956842880667036897, 6.08563354775183968873758104986, 6.43112939428577969932200477043, 7.21752622203494613406609226643, 7.26173247581483809731111499982, 7.68638636784890333635413854636, 7.76561490693609783976654679509, 8.453675128008026264056927023081, 8.589137796847909143080721868858