Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 70 x^{2} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.0986555104570$, $\pm0.901344489543$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{39})\) |
Galois group: | $C_2^2$ |
Jacobians: | $52$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1780$ | $3168400$ | $6321408340$ | $11679989760000$ | $21611482607038900$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $1710$ | $79508$ | $3416398$ | $147008444$ | $6321453630$ | $271818611108$ | $11688211063198$ | $502592611936844$ | $21611482900793550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=15 x^6+14 x^5+22 x^4+18 x^3+27 x^2+15 x+16$
- $y^2=2 x^6+42 x^5+23 x^4+11 x^3+38 x^2+2 x+5$
- $y^2=15 x^6+42 x^4+26 x^3+10 x^2+7$
- $y^2=33 x^6+18 x^5+21 x^4+16 x^3+7 x^2+41 x+19$
- $y^2=36 x^6+8 x^5+24 x^4+39 x^3+42 x^2+14 x+42$
- $y^2=11 x^6+37 x^5+20 x^4+32 x^3+29 x^2+5 x+22$
- $y^2=4 x^6+36 x^5+7 x^4+26 x^3+13 x^2+25 x+27$
- $y^2=3 x^6+20 x^5+19 x^4+8 x^3+11 x^2+26 x+31$
- $y^2=36 x^6+9 x^5+22 x+9$
- $y^2=16 x^6+40 x^5+36 x^4+25 x^2+33 x+41$
- $y^2=5 x^6+19 x^5+8 x^4+8 x^3+21 x^2+33 x+33$
- $y^2=15 x^6+14 x^5+24 x^4+24 x^3+20 x^2+13 x+13$
- $y^2=38 x^6+x^5+42 x^4+19 x^3+14 x^2+24 x+3$
- $y^2=7 x^6+28 x^5+3 x^4+42 x^3+16 x^2+34 x+1$
- $y^2=21 x^6+41 x^5+9 x^4+40 x^3+5 x^2+16 x+3$
- $y^2=40 x^6+x^5+11 x^4+9 x^2+37 x+40$
- $y^2=31 x^6+37 x^5+12 x^4+27 x^3+31 x^2+37 x+12$
- $y^2=27 x^6+31 x^5+36 x^4+28 x^2+23 x+35$
- $y^2=13 x^6+30 x^5+17 x^4+4 x^3+32 x^2+20 x+18$
- $y^2=x^6+6 x^5+3 x^4+3 x^2+37 x+1$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{39})\). |
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.acs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-39}) \)$)$ |
Base change
This is a primitive isogeny class.