Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 70 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.135198170427$, $\pm0.864801829573$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{11})\) |
Galois group: | $C_2^2$ |
Jacobians: | $165$ |
Isomorphism classes: | 234 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2740$ | $7507600$ | $22164608020$ | $62271037440000$ | $174887470740579700$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2670$ | $148878$ | $7891918$ | $418195494$ | $22164854910$ | $1174711139838$ | $62259720942238$ | $3299763591802134$ | $174887471115646350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 165 curves (of which all are hyperelliptic):
- $y^2=50 x^6+6 x^5+51 x^4+14 x^2+24 x+22$
- $y^2=18 x^6+35 x^5+10 x^4+13 x^2+23 x+14$
- $y^2=39 x^6+31 x^5+9 x^4+24 x^3+26 x^2+38 x+32$
- $y^2=25 x^6+9 x^5+18 x^4+48 x^3+52 x^2+23 x+11$
- $y^2=39 x^6+25 x^5+5 x^4+5 x^3+11 x^2+51$
- $y^2=25 x^6+50 x^5+10 x^4+10 x^3+22 x^2+49$
- $y^2=29 x^6+45 x^5+7 x^4+12 x^3+26 x^2+42 x+11$
- $y^2=5 x^6+37 x^5+14 x^4+24 x^3+52 x^2+31 x+22$
- $y^2=x^6+44 x^5+46 x^4+8 x^3+18 x^2+40 x+19$
- $y^2=34 x^6+20 x^5+47 x^4+30 x^3+42 x^2+9 x+41$
- $y^2=15 x^6+40 x^5+41 x^4+7 x^3+31 x^2+18 x+29$
- $y^2=28 x^5+21 x^4+33 x^3+29 x^2+49 x+52$
- $y^2=3 x^6+38 x^5+10 x^4+48 x^3+11 x^2+52 x+49$
- $y^2=6 x^6+23 x^5+20 x^4+43 x^3+22 x^2+51 x+45$
- $y^2=35 x^6+42 x^5+6 x^4+5 x^3+9 x^2+x+23$
- $y^2=14 x^6+13 x^5+28 x^4+19 x^3+42 x^2+12 x+49$
- $y^2=28 x^6+26 x^5+3 x^4+38 x^3+31 x^2+24 x+45$
- $y^2=52 x^6+49 x^5+15 x^4+43 x^3+12 x^2+25 x+5$
- $y^2=6 x^6+8 x^5+9 x^4+31 x^3+32 x^2+20 x+18$
- $y^2=8 x^5+35 x^4+17 x^3+21 x^2+24 x+1$
- and 145 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{11})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.acs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$ |
Base change
This is a primitive isogeny class.