Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 35 x^{2} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.292058120679$, $\pm0.707941879321$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{11})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $231$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4525$ | $20475625$ | $90457953700$ | $406380241265625$ | $1822837807168400125$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $68$ | $4560$ | $300764$ | $20166628$ | $1350125108$ | $90457525230$ | $6060711605324$ | $406067637943108$ | $27206534396294948$ | $1822837809785038800$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 231 curves (of which all are hyperelliptic):
- $y^2=21 x^6+21 x^5+14 x^4+32 x^3+21 x^2+60 x+39$
- $y^2=42 x^6+42 x^5+28 x^4+64 x^3+42 x^2+53 x+11$
- $y^2=61 x^6+40 x^5+4 x^4+6 x^3+34 x^2+30 x+22$
- $y^2=55 x^6+13 x^5+8 x^4+12 x^3+x^2+60 x+44$
- $y^2=22 x^6+65 x^5+49 x^4+52 x^3+20 x^2+58 x+44$
- $y^2=44 x^6+63 x^5+31 x^4+37 x^3+40 x^2+49 x+21$
- $y^2=47 x^6+56 x^5+38 x^4+29 x^3+29 x^2+20 x+34$
- $y^2=27 x^6+45 x^5+9 x^4+58 x^3+58 x^2+40 x+1$
- $y^2=2 x^6+15 x^5+57 x^4+15 x^3+29 x^2+64 x+3$
- $y^2=4 x^6+30 x^5+47 x^4+30 x^3+58 x^2+61 x+6$
- $y^2=39 x^6+44 x^5+5 x^4+11 x^3+62 x^2+35 x+28$
- $y^2=24 x^6+13 x^5+12 x^4+27 x^3+26 x^2+38 x+27$
- $y^2=48 x^6+26 x^5+24 x^4+54 x^3+52 x^2+9 x+54$
- $y^2=45 x^6+17 x^5+15 x^4+10 x^3+19 x^2+59 x+11$
- $y^2=23 x^6+34 x^5+30 x^4+20 x^3+38 x^2+51 x+22$
- $y^2=13 x^6+10 x^5+34 x^4+32 x^3+54 x^2+62 x+14$
- $y^2=26 x^6+20 x^5+x^4+64 x^3+41 x^2+57 x+28$
- $y^2=47 x^6+45 x^5+34 x^4+59 x^3+36 x^2+33 x+47$
- $y^2=27 x^6+23 x^5+x^4+51 x^3+5 x^2+66 x+27$
- $y^2=65 x^6+65 x^5+3 x^4+52 x^3+28 x^2+46 x+49$
- and 211 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{11})\). |
| The base change of $A$ to $\F_{67^{2}}$ is 1.4489.bj 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$ |
Base change
This is a primitive isogeny class.