Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x^{2} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.222612475433$, $\pm0.777387524567$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{19})\) |
Galois group: | $C_2^2$ |
Jacobians: | $275$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5305$ | $28143025$ | $151334610340$ | $807030088475625$ | $4297625826560340025$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $5280$ | $389018$ | $28418308$ | $2073071594$ | $151334994390$ | $11047398519098$ | $806460004164868$ | $58871586708267914$ | $4297625823417122400$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 275 curves (of which all are hyperelliptic):
- $y^2=13 x^6+56 x^5+25 x^4+67 x^3+34 x^2+28 x+16$
- $y^2=65 x^6+61 x^5+52 x^4+43 x^3+24 x^2+67 x+7$
- $y^2=29 x^6+38 x^5+62 x^4+66 x^3+18 x^2+62 x+42$
- $y^2=72 x^6+44 x^5+18 x^4+38 x^3+17 x^2+18 x+64$
- $y^2=59 x^6+17 x^5+32 x^4+43 x^3+65 x^2+58 x+2$
- $y^2=3 x^6+12 x^5+14 x^4+69 x^3+33 x^2+71 x+10$
- $y^2=50 x^6+25 x^5+50 x^4+68 x^3+39 x^2+46 x+1$
- $y^2=31 x^6+52 x^5+31 x^4+48 x^3+49 x^2+11 x+5$
- $y^2=51 x^6+41 x^5+48 x^4+13 x^3+19 x^2+72 x+65$
- $y^2=36 x^6+59 x^5+21 x^4+65 x^3+22 x^2+68 x+33$
- $y^2=72 x^6+72 x^5+25 x^4+31 x^3+13 x+16$
- $y^2=68 x^6+68 x^5+52 x^4+9 x^3+65 x+7$
- $y^2=63 x^6+68 x^5+37 x^4+58 x^3+29 x^2+43 x+24$
- $y^2=52 x^6+6 x^5+22 x^4+70 x^3+43 x^2+43 x+51$
- $y^2=41 x^6+30 x^5+37 x^4+58 x^3+69 x^2+69 x+36$
- $y^2=63 x^6+6 x^5+25 x^4+32 x^3+50 x^2+72 x+61$
- $y^2=23 x^6+30 x^5+52 x^4+14 x^3+31 x^2+68 x+13$
- $y^2=28 x^6+53 x^5+20 x^4+50 x^3+61 x^2+61 x+46$
- $y^2=67 x^6+46 x^5+27 x^4+31 x^3+13 x^2+13 x+11$
- $y^2=28 x^6+56 x^5+52 x^4+52 x^3+60 x^2+41 x+30$
- and 255 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{19})\). |
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.az 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$ |
Base change
This is a primitive isogeny class.