Properties

Label 2.7.a_ak
Base field $\F_{7}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $2$
L-polynomial:  $1 - 10 x^{2} + 49 x^{4}$
Frobenius angles:  $\pm0.123375857214$, $\pm0.876624142786$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{6})\)
Galois group:  $C_2^2$
Jacobians:  $3$
Isomorphism classes:  12

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $40$ $1600$ $118120$ $5760000$ $282500200$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $8$ $30$ $344$ $2398$ $16808$ $118590$ $823544$ $5774398$ $40353608$ $282525150$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7^{2}}$.

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{6})\).
Endomorphism algebra over $\overline{\F}_{7}$
The base change of $A$ to $\F_{7^{2}}$ is 1.49.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.7.ae_s$4$(not in LMFDB)
2.7.a_k$4$(not in LMFDB)
2.7.e_s$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.7.ae_s$4$(not in LMFDB)
2.7.a_k$4$(not in LMFDB)
2.7.e_s$4$(not in LMFDB)
2.7.ac_ad$12$(not in LMFDB)
2.7.c_ad$12$(not in LMFDB)