Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 15 x + 89 x^{2} )^{2}$ |
| $1 - 30 x + 403 x^{2} - 2670 x^{3} + 7921 x^{4}$ | |
| Frobenius angles: | $\pm0.207471636293$, $\pm0.207471636293$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $40$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5625$ | $62015625$ | $497871360000$ | $3938299847015625$ | $31183377591212015625$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $7828$ | $706230$ | $62769508$ | $5584356300$ | $496983317038$ | $44231338867020$ | $3936588684953668$ | $350356401542796390$ | $31181719908242460148$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=23 x^6+60 x^5+31 x^4+16 x^3+70 x^2+13 x+28$
- $y^2=55 x^6+37 x^5+82 x^4+18 x^3+86 x^2+74 x+9$
- $y^2=85 x^6+77 x^5+67 x^4+59 x^3+78 x^2+86 x+44$
- $y^2=44 x^6+71 x^5+52 x^4+61 x^3+38 x^2+47 x+2$
- $y^2=46 x^6+28 x^5+67 x^4+33 x^3+67 x^2+28 x+46$
- $y^2=37 x^6+25 x^5+54 x^4+53 x^3+76 x^2+87 x+76$
- $y^2=17 x^6+82 x^5+81 x^4+20 x^3+47 x^2+24 x+50$
- $y^2=60 x^6+70 x^5+3 x^4+75 x^3+6 x^2+13 x+35$
- $y^2=43 x^6+64 x^5+47 x^4+40 x^3+88 x^2+85 x+30$
- $y^2=79 x^6+79 x^5+28 x^4+66 x^3+86 x^2+21 x+20$
- $y^2=34 x^6+8 x^5+17 x^4+15 x^3+13 x^2+15 x+32$
- $y^2=24 x^6+64 x^5+78 x^4+4 x^3+59 x^2+34 x+80$
- $y^2=24 x^6+85 x^5+55 x^4+74 x^3+67 x^2+7 x+1$
- $y^2=82 x^6+20 x^5+55 x^4+54 x^3+57 x^2+56 x+63$
- $y^2=82 x^6+38 x^5+48 x^4+84 x^3+48 x^2+38 x+82$
- $y^2=74 x^6+40 x^5+78 x^4+69 x^3+34 x^2+21 x+83$
- $y^2=31 x^6+49 x^5+47 x^4+56 x^3+80 x^2+69 x+51$
- $y^2=18 x^6+57 x^5+69 x^4+76 x^3+72 x^2+73 x+21$
- $y^2=29 x^6+17 x^5+72 x^4+71 x^3+5 x^2+80 x+31$
- $y^2=52 x^6+43 x^5+79 x^4+66 x^3+22 x^2+23 x+75$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The isogeny class factors as 1.89.ap 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-131}) \)$)$ |
Base change
This is a primitive isogeny class.