Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 29 x^{2} )^{2}$ |
| $1 + 58 x^{2} + 841 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.5$ |
| Angle rank: | $0$ (numerical) |
| Jacobians: | $36$ |
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
| $p$-rank: | $0$ |
| Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $900$ | $810000$ | $594872100$ | $497871360000$ | $420707274322500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $958$ | $24390$ | $703918$ | $20511150$ | $594920878$ | $17249876310$ | $500243583838$ | $14507145975870$ | $420707315344798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=x^5+28$
- $y^2=2 x^5+27$
- $y^2=19 x^5+3 x^4+8 x^3+16 x^2+6 x+27$
- $y^2=7 x^6+18 x^5+17 x^4+18 x^3+12 x^2+18 x+22$
- $y^2=14 x^6+7 x^5+5 x^4+7 x^3+24 x^2+7 x+15$
- $y^2=27 x^6+17 x^5+28 x^4+21 x^3+28 x^2+17 x+27$
- $y^2=25 x^6+5 x^5+27 x^4+13 x^3+27 x^2+5 x+25$
- $y^2=2 x^6+8 x^5+9 x^4+26 x^3+13 x^2+26 x+11$
- $y^2=4 x^6+16 x^5+18 x^4+23 x^3+26 x^2+23 x+22$
- $y^2=9 x^6+16 x^5+28 x^4+x^3+28 x^2+16 x+9$
- $y^2=18 x^6+3 x^5+27 x^4+2 x^3+27 x^2+3 x+18$
- $y^2=x^5+25 x$
- $y^2=x^6+25 x^5+8 x^4+19 x^3+13 x^2+16 x+1$
- $y^2=x^6+x^3+28$
- $y^2=2 x^6+2 x^3+27$
- $y^2=13 x^6+27 x^5+17 x^4+x^3+12 x^2+27 x+16$
- $y^2=26 x^6+25 x^5+5 x^4+2 x^3+24 x^2+25 x+3$
- $y^2=27 x^6+17 x^5+18 x^4+14 x^3+15 x^2+11 x+12$
- $y^2=25 x^6+5 x^5+7 x^4+28 x^3+x^2+22 x+24$
- $y^2=17 x^6+26 x^5+8 x^4+8 x^3+8 x^2+26 x+17$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$| The isogeny class factors as 1.29.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-29}) \)$)$ |
| The base change of $A$ to $\F_{29^{2}}$ is 1.841.cg 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $29$ and $\infty$. |
Base change
This is a primitive isogeny class.