Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
| $A(\F_{q^r})$ |
$8100$ |
$39690000$ |
$241739388900$ |
$1517819264640000$ |
$9468381016694902500$ |
Point counts of the curve
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
| $C(\F_{q^r})$ |
$100$ |
$6358$ |
$490300$ |
$38968318$ |
$3077090500$ |
$243085673878$ |
$19203924108700$ |
$1517108799431038$ |
$119851594892692900$ |
$9468276094353667798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 87 curves (of which all are hyperelliptic):
- $y^2=36 x^6+67 x^5+10 x^4+56 x^3+16 x^2+23 x+16$
- $y^2=25 x^6+52 x^5+63 x^4+36 x^3+60 x^2+61 x+66$
- $y^2=67 x^6+9 x^5+33 x^4+47 x^3+66 x^2+11 x+1$
- $y^2=2 x^6+58 x^5+12 x^4+40 x^3+31 x^2+11 x+4$
- $y^2=8 x^6+8 x^5+3 x^4+75 x^3+25 x^2+40 x+72$
- $y^2=x^6+x^3+38$
- $y^2=66 x^6+33 x^5+37 x^4+32 x^3+39 x^2+74 x+77$
- $y^2=10 x^6+12 x^5+27 x^4+26 x^3+6 x^2+39 x+70$
- $y^2=32 x^6+44 x^5+42 x^4+32 x^3+42 x^2+44 x+32$
- $y^2=42 x^6+73 x^5+48 x^4+18 x^3+48 x^2+73 x+42$
- $y^2=56 x^6+17 x^5+39 x^4+54 x^3+39 x^2+17 x+56$
- $y^2=11 x^6+50 x^5+40 x^4+23 x^3+40 x^2+50 x+11$
- $y^2=48 x^6+24 x^4+49 x^3+24 x^2+48$
- $y^2=75 x^6+9 x^5+72 x^4+34 x^3+33 x^2+67 x+58$
- $y^2=x^6+5 x^3+46$
- $y^2=28 x^6+63 x^5+18 x^4+47 x^3+52 x^2+14 x+23$
- $y^2=31 x^6+62 x^5+23 x^4+66 x^3+44 x^2+2 x+50$
- $y^2=7 x^6+30 x^5+14 x^4+38 x^3+14 x^2+30 x+7$
- $y^2=31 x^6+74 x^5+31 x^4+10 x^3+40 x^2+75 x+9$
- $y^2=23 x^6+32 x^5+30 x^4+40 x^3+42 x^2+37 x+23$
- and 67 more
- $y^2=6 x^6+64 x^5+72 x^4+72 x^3+72 x^2+64 x+6$
- $y^2=55 x^6+47 x^5+71 x^4+41 x^3+27 x^2+70 x+45$
- $y^2=51 x^6+42 x^5+69 x^4+44 x^3+69 x^2+42 x+51$
- $y^2=20 x^6+45 x^5+39 x^4+40 x^3+53 x^2+20 x+76$
- $y^2=14 x^6+x^5+69 x^4+16 x^3+8 x^2+4 x+2$
- $y^2=78 x^6+14 x^5+20 x^4+2 x^3+20 x^2+14 x+78$
- $y^2=5 x^6+41 x^5+x^4+x^2+41 x+5$
- $y^2=76 x^6+43 x^5+19 x^4+61 x^3+51 x^2+68 x+36$
- $y^2=77 x^6+35 x^5+10 x^4+40 x^3+10 x^2+62$
- $y^2=14 x^6+17 x^4+17 x^2+14$
- $y^2=9 x^6+45 x^5+70 x^4+75 x^3+68 x^2+49 x+64$
- $y^2=x^6+45 x^3+38$
- $y^2=23 x^6+76 x^5+78 x^4+19 x^3+78 x^2+76 x+23$
- $y^2=4 x^6+68 x^5+43 x^4+43 x^2+68 x+4$
- $y^2=46 x^6+31 x^4+31 x^2+46$
- $y^2=x^6+x^3+65$
- $y^2=60 x^6+15 x^5+75 x^4+65 x^3+43 x^2+30 x+53$
- $y^2=x^6+40 x^3+10$
- $y^2=19 x^6+22 x^5+21 x^4+21 x^3+77 x^2+69 x+59$
- $y^2=32 x^6+40 x^4+62 x^3+5 x^2+24 x+68$
- $y^2=63 x^6+9 x^4+9 x^2+63$
- $y^2=16 x^6+10 x^5+60 x^4+75 x^3+50 x^2+76 x+55$
- $y^2=50 x^6+41 x^5+67 x^4+44 x^3+67 x^2+41 x+50$
- $y^2=37 x^6+22 x^5+76 x^4+69 x^3+76 x^2+22 x+37$
- $y^2=8 x^6+20 x^5+42 x^4+19 x^3+42 x^2+20 x+8$
- $y^2=4 x^6+75 x^5+17 x^4+30 x^3+10 x^2+49 x+1$
- $y^2=26 x^6+56 x^5+59 x^4+76 x^3+63 x^2+39 x+19$
- $y^2=73 x^6+29 x^5+24 x^4+63 x^3+24 x^2+29 x+73$
- $y^2=33 x^6+59 x^5+59 x^4+59 x^3+59 x^2+59 x+33$
- $y^2=12 x^6+54 x^5+5 x^4+7 x^3+52 x^2+61 x+69$
- $y^2=73 x^6+15 x^5+60 x^4+28 x^3+14 x^2+39 x+9$
- $y^2=x^6+16 x^5+41 x^4+16 x^3+33 x^2+2 x+62$
- $y^2=61 x^6+20 x^5+65 x^4+35 x^3+41 x^2+21 x+13$
- $y^2=65 x^6+54 x^5+8 x^4+73 x^3+34 x^2+67 x+64$
- $y^2=22 x^6+62 x^5+6 x^4+31 x^3+48 x^2+18 x+46$
- $y^2=55 x^6+69 x^5+75 x^4+12 x^3+75 x^2+69 x+55$
- $y^2=48 x^6+35 x^5+32 x^4+24 x^3+x^2+41 x+39$
- $y^2=45 x^6+33 x^5+78 x^4+28 x^3+43 x^2+29 x+16$
- $y^2=40 x^6+54 x^5+60 x^4+10 x^3+65 x^2+21 x+51$
- $y^2=9 x^6+76 x^5+58 x^4+55 x^3+58 x^2+76 x+9$
- $y^2=53 x^6+10 x^5+34 x^4+22 x^3+41 x^2+36 x+60$
- $y^2=44 x^6+44 x^5+12 x^4+49 x^3+71 x^2+77 x+48$
- $y^2=13 x^6+47 x^5+71 x^4+61 x^3+30 x^2+17 x+31$
- $y^2=2 x^6+38 x^5+25 x^4+56 x^3+x^2+51 x+51$
- $y^2=77 x^6+48 x^5+5 x^4+31 x^3+32 x^2+29 x+66$
- $y^2=78 x^6+11 x^5+76 x^4+76 x^3+20 x^2+33 x+76$
- $y^2=75 x^6+27 x^5+28 x^4+45 x^3+62 x+69$
- $y^2=52 x^6+6 x^5+18 x^4+4 x^3+42 x^2+59 x+52$
- $y^2=x^6+x^3+21$
- $y^2=66 x^6+74 x^5+76 x^4+34 x^3+76 x^2+74 x+66$
- $y^2=59 x^6+19 x^5+78 x^4+12 x^3+57 x^2+32 x+24$
- $y^2=67 x^6+17 x^5+37 x^4+12 x^3+37 x^2+17 x+67$
- $y^2=26 x^6+47 x^5+40 x^4+4 x^3+40 x^2+47 x+26$
- $y^2=74 x^6+20 x^5+72 x^4+65 x^3+72 x^2+20 x+74$
- $y^2=21 x^6+23 x^5+43 x^4+26 x^3+19 x^2+15 x+26$
- $y^2=35 x^6+35 x^5+39 x^4+47 x^3+73 x^2+32 x+62$
- $y^2=59 x^6+44 x^5+26 x^4+41 x^3+26 x^2+44 x+59$
- $y^2=39 x^6+27 x^5+58 x^4+76 x^3+29 x^2+66 x+74$
- $y^2=6 x^6+42 x^5+75 x^4+72 x^3+75 x^2+42 x+6$
- $y^2=27 x^6+59 x^5+54 x^4+38 x^3+54 x^2+59 x+27$
- $y^2=78 x^6+18 x^5+62 x^4+48 x^3+62 x^2+18 x+78$
- $y^2=44 x^6+41 x^4+41 x^2+44$
- $y^2=29 x^6+36 x^5+41 x^4+55 x^3+41 x^2+36 x+29$
- $y^2=x^6+51 x^3+10$
- $y^2=19 x^6+47 x^5+14 x^4+64 x^3+61 x^2+34 x+34$
- $y^2=34 x^6+75 x^4+53 x^3+75 x^2+34$
- $y^2=6 x^6+64 x^5+59 x^4+4 x^3+69 x^2+31 x+52$
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$
Base change
This is a primitive isogeny class.
Twists