| L(s) = 1 | + 3-s + 2·7-s + 9-s − 12·13-s + 8·19-s + 2·21-s + 6·25-s + 27-s + 4·37-s − 12·39-s + 8·43-s + 3·49-s + 8·57-s + 12·61-s + 2·63-s + 16·67-s − 4·73-s + 6·75-s − 24·79-s + 81-s − 24·91-s − 4·97-s + 32·103-s − 4·109-s + 4·111-s − 12·117-s − 18·121-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 0.755·7-s + 1/3·9-s − 3.32·13-s + 1.83·19-s + 0.436·21-s + 6/5·25-s + 0.192·27-s + 0.657·37-s − 1.92·39-s + 1.21·43-s + 3/7·49-s + 1.05·57-s + 1.53·61-s + 0.251·63-s + 1.95·67-s − 0.468·73-s + 0.692·75-s − 2.70·79-s + 1/9·81-s − 2.51·91-s − 0.406·97-s + 3.15·103-s − 0.383·109-s + 0.379·111-s − 1.10·117-s − 1.63·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.207397655\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.207397655\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.977835409861481770724787215218, −8.100150186340802045251146455502, −7.76556317647643738947138137602, −7.47655671664491235528608994140, −6.98585917665527551317684669265, −6.76281206095777722703467003614, −5.54203834680246413327649010589, −5.44643327053124053530313487020, −4.73251701657473593050786657983, −4.59055067570292347348864981302, −3.76740235739525618511594493326, −2.75718031114594033742569839966, −2.73919662589933967809346607483, −1.92538980972810959214451574073, −0.831916978658255590031556900046,
0.831916978658255590031556900046, 1.92538980972810959214451574073, 2.73919662589933967809346607483, 2.75718031114594033742569839966, 3.76740235739525618511594493326, 4.59055067570292347348864981302, 4.73251701657473593050786657983, 5.44643327053124053530313487020, 5.54203834680246413327649010589, 6.76281206095777722703467003614, 6.98585917665527551317684669265, 7.47655671664491235528608994140, 7.76556317647643738947138137602, 8.100150186340802045251146455502, 8.977835409861481770724787215218