Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 2 x + 97 x^{2} )^{2}$ |
$1 + 4 x + 198 x^{2} + 388 x^{3} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.532375263179$, $\pm0.532375263179$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $257$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10000$ | $92160000$ | $831926410000$ | $7834374144000000$ | $73743962592330250000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $102$ | $9790$ | $911526$ | $88494718$ | $8587520742$ | $832974996670$ | $80798260987686$ | $7837433351159038$ | $760231061419572582$ | $73742412707554949950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 257 curves (of which all are hyperelliptic):
- $y^2=9 x^6+41 x^5+53 x^4+54 x^3+82 x^2+93 x+7$
- $y^2=27 x^6+52 x^5+84 x^4+58 x^3+83 x^2+25 x+35$
- $y^2=x^6+26 x^5+60 x^4+28 x^3+92 x^2+15 x+27$
- $y^2=41 x^6+65 x^5+88 x^4+54 x^3+88 x^2+65 x+41$
- $y^2=26 x^6+46 x^5+79 x^4+52 x^3+65 x^2+40 x+58$
- $y^2=32 x^6+37 x^5+45 x^4+9 x^3+57 x^2+14 x+40$
- $y^2=48 x^6+70 x^5+21 x^4+15 x^3+21 x^2+70 x+48$
- $y^2=9 x^6+71 x^5+13 x^4+93 x^3+94 x^2+5 x+45$
- $y^2=14 x^6+22 x^5+28 x^4+37 x^3+41 x^2+88 x+82$
- $y^2=48 x^6+55 x^5+58 x^4+49 x^3+39 x^2+55 x+49$
- $y^2=90 x^6+77 x^5+16 x^4+43 x^3+88 x^2+74 x+60$
- $y^2=86 x^6+55 x^5+57 x^4+4 x^3+91 x^2+7 x+95$
- $y^2=49 x^6+81 x^5+65 x^4+43 x^3+24 x^2+88 x+93$
- $y^2=74 x^6+39 x^4+90 x^3+13 x^2+2 x$
- $y^2=89 x^6+66 x^5+63 x^4+18 x^3+51 x^2+3 x+27$
- $y^2=82 x^6+54 x^5+22 x^4+34 x^3+22 x^2+54 x+82$
- $y^2=10 x^6+52 x^5+81 x^4+62 x^3+81 x^2+52 x+10$
- $y^2=15 x^6+82 x^5+74 x^4+45 x^3+55 x^2+60 x+76$
- $y^2=84 x^6+25 x^5+95 x^4+46 x^3+70 x^2+70 x+13$
- $y^2=96 x^6+41 x^5+16 x^4+80 x^2+84 x+39$
- and 237 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.c 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.