Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 83 x^{2} )( 1 + 4 x + 83 x^{2} )$ |
$1 + 150 x^{2} + 6889 x^{4}$ | |
Frobenius angles: | $\pm0.429548098763$, $\pm0.570451901237$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $425$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7040$ | $49561600$ | $326940648320$ | $2251464540160000$ | $15516041182485219200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $7190$ | $571788$ | $47440878$ | $3939040644$ | $326940923270$ | $27136050989628$ | $2252292269825758$ | $186940255267540404$ | $15516041177764584950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 425 curves (of which all are hyperelliptic):
- $y^2=43 x^6+80 x^5+7 x^4+58 x^3+x^2+66 x+19$
- $y^2=3 x^6+77 x^5+14 x^4+33 x^3+2 x^2+49 x+38$
- $y^2=23 x^6+30 x^5+33 x^4+55 x^3+50 x^2+48 x+13$
- $y^2=66 x^6+47 x^5+20 x^4+13 x^3+50 x^2+24 x+56$
- $y^2=49 x^6+11 x^5+40 x^4+26 x^3+17 x^2+48 x+29$
- $y^2=79 x^6+28 x^5+48 x^4+73 x^3+59 x^2+22 x+31$
- $y^2=75 x^6+56 x^5+13 x^4+63 x^3+35 x^2+44 x+62$
- $y^2=54 x^6+48 x^5+59 x^4+41 x^3+59 x^2+48 x+54$
- $y^2=25 x^6+13 x^5+35 x^4+82 x^3+35 x^2+13 x+25$
- $y^2=54 x^6+23 x^5+14 x^4+10 x^3+27 x^2+33 x+59$
- $y^2=25 x^6+46 x^5+28 x^4+20 x^3+54 x^2+66 x+35$
- $y^2=17 x^6+80 x^5+46 x^4+52 x^3+56 x^2+58 x+63$
- $y^2=34 x^6+77 x^5+9 x^4+21 x^3+29 x^2+33 x+43$
- $y^2=5 x^6+32 x^5+23 x^4+40 x^3+23 x^2+32 x+5$
- $y^2=10 x^6+64 x^5+46 x^4+80 x^3+46 x^2+64 x+10$
- $y^2=79 x^6+41 x^5+52 x^4+29 x^3+15 x^2+21 x+74$
- $y^2=75 x^6+82 x^5+21 x^4+58 x^3+30 x^2+42 x+65$
- $y^2=58 x^6+19 x^5+9 x^4+55 x^3+12 x^2+47 x+19$
- $y^2=33 x^6+38 x^5+18 x^4+27 x^3+24 x^2+11 x+38$
- $y^2=80 x^6+15 x^5+5 x^4+48 x^3+40 x^2+78 x+56$
- and 405 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$The isogeny class factors as 1.83.ae $\times$ 1.83.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.fu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-79}) \)$)$ |
Base change
This is a primitive isogeny class.