Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 29 x^{2} )( 1 + 2 x + 29 x^{2} )$ |
| $1 + 54 x^{2} + 841 x^{4}$ | |
| Frobenius angles: | $\pm0.440546251002$, $\pm0.559453748998$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $34$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $896$ | $802816$ | $594844544$ | $498503778304$ | $420707221294976$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $950$ | $24390$ | $704814$ | $20511150$ | $594865766$ | $17249876310$ | $500246196574$ | $14507145975870$ | $420707209289750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 34 curves (of which all are hyperelliptic):
- $y^2=4 x^6+12 x^5+6 x^4+28 x^3+7 x^2+26 x+23$
- $y^2=8 x^6+24 x^5+12 x^4+27 x^3+14 x^2+23 x+17$
- $y^2=25 x^6+28 x^5+17 x^3+15 x^2+28 x+9$
- $y^2=8 x^6+11 x^5+9 x^4+3 x^3+28 x^2+3 x+27$
- $y^2=16 x^6+22 x^5+18 x^4+6 x^3+27 x^2+6 x+25$
- $y^2=18 x^6+10 x^4+20 x^2+28$
- $y^2=13 x^6+2 x^4+4 x^2+17$
- $y^2=16 x^6+12 x^5+23 x^4+26 x^3+9 x^2+12 x+14$
- $y^2=25 x^6+16 x^5+21 x^4+16 x^3+26 x^2+24 x+17$
- $y^2=21 x^6+3 x^5+13 x^4+3 x^3+23 x^2+19 x+5$
- $y^2=26 x^6+27 x^5+20 x^4+18 x^3+25 x^2+15 x+10$
- $y^2=23 x^6+25 x^5+11 x^4+7 x^3+21 x^2+x+20$
- $y^2=22 x^6+14 x^5+28 x^4+25 x^3+23 x^2+11 x+25$
- $y^2=15 x^6+28 x^5+27 x^4+21 x^3+17 x^2+22 x+21$
- $y^2=3 x^6+15 x^4+x^2+24$
- $y^2=28 x^6+26 x^4+23 x^2+21$
- $y^2=12 x^6+x^5+10 x^4+11 x^3+12 x^2+20 x+27$
- $y^2=24 x^6+2 x^5+20 x^4+22 x^3+24 x^2+11 x+25$
- $y^2=5 x^6+28 x^5+20 x^4+26 x^3+20 x^2+28 x+5$
- $y^2=10 x^6+27 x^5+11 x^4+23 x^3+11 x^2+27 x+10$
- and 14 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$| The isogeny class factors as 1.29.ac $\times$ 1.29.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{29^{2}}$ is 1.841.cc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.