Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 23 x^{2} )( 1 + 2 x + 23 x^{2} )$ |
| $1 + 42 x^{2} + 529 x^{4}$ | |
| Frobenius angles: | $\pm0.433137181604$, $\pm0.566862818396$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $12$ |
| Isomorphism classes: | 40 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $572$ | $327184$ | $148043324$ | $77916906496$ | $41426504708732$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $614$ | $12168$ | $278430$ | $6436344$ | $148050758$ | $3404825448$ | $78311107774$ | $1801152661464$ | $41426498203814$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=5 x^6+5 x^5+10 x^4+16 x^3+3 x^2+20 x+6$
- $y^2=21 x^6+4 x^5+22 x^4+4 x^3+22 x^2+4 x+21$
- $y^2=13 x^6+20 x^5+18 x^4+20 x^3+18 x^2+20 x+13$
- $y^2=10 x^6+9 x^5+6 x^3+13 x+12$
- $y^2=18 x^6+7 x^5+9 x^4+x^3+12 x^2+15 x+12$
- $y^2=21 x^6+12 x^5+22 x^4+5 x^3+14 x^2+6 x+14$
- $y^2=7 x^6+3 x^4+15 x^2+1$
- $y^2=18 x^6+4 x^4+20 x^2+19$
- $y^2=8 x^6+16 x^5+18 x^4+17 x^3+14 x^2+15 x+7$
- $y^2=17 x^6+11 x^5+21 x^4+16 x^3+x^2+6 x+12$
- $y^2=3 x^6+4 x^5+14 x^4+7 x^2+6 x+19$
- $y^2=15 x^6+20 x^5+x^4+12 x^2+7 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$| The isogeny class factors as 1.23.ac $\times$ 1.23.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{23^{2}}$ is 1.529.bq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-22}) \)$)$ |
Base change
This is a primitive isogeny class.