Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 47 x^{2} )( 1 + 12 x + 47 x^{2} )$ |
| $1 - 50 x^{2} + 2209 x^{4}$ | |
| Frobenius angles: | $\pm0.160736311100$, $\pm0.839263688900$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $227$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2160$ | $4665600$ | $10779421680$ | $23830018560000$ | $52599132084034800$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $2110$ | $103824$ | $4883518$ | $229345008$ | $10779628030$ | $506623120464$ | $23811298823038$ | $1119130473102768$ | $52599131932239550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 227 curves (of which all are hyperelliptic):
- $y^2=40 x^6+9 x^5+4 x^4+4 x^3+11 x^2+24 x+27$
- $y^2=31 x^6+13 x^4+36 x^3+45 x^2+30 x+1$
- $y^2=14 x^6+18 x^4+39 x^3+37 x^2+9 x+5$
- $y^2=31 x^6+43 x^5+28 x^4+39 x^3+34 x^2+31 x+22$
- $y^2=44 x^6+33 x^5+41 x^4+45 x^3+25 x^2+14 x+7$
- $y^2=5 x^6+34 x^5+12 x^4+33 x^3+36 x^2+42 x+44$
- $y^2=25 x^6+29 x^5+13 x^4+24 x^3+39 x^2+22 x+32$
- $y^2=20 x^6+39 x^5+13 x^4+45 x^3+17 x^2+9 x+16$
- $y^2=34 x^6+41 x^5+42 x^4+22 x^3+35 x^2+27 x+11$
- $y^2=29 x^6+17 x^5+22 x^4+16 x^3+34 x^2+41 x+8$
- $y^2=9 x^5+18 x^4+16 x^3+26 x^2+17 x+20$
- $y^2=45 x^5+43 x^4+33 x^3+36 x^2+38 x+6$
- $y^2=17 x^6+24 x^5+26 x^4+14 x^3+21 x^2+12 x+10$
- $y^2=38 x^6+26 x^5+36 x^4+23 x^3+11 x^2+13 x+3$
- $y^2=24 x^6+20 x^5+46 x^4+30 x^3+42 x^2+30 x+39$
- $y^2=12 x^6+4 x^5+25 x^4+30 x^3+45 x^2+5 x+35$
- $y^2=13 x^6+20 x^5+31 x^4+9 x^3+37 x^2+25 x+34$
- $y^2=29 x^6+28 x^5+38 x^4+13 x^3+5 x^2+27 x+37$
- $y^2=4 x^6+46 x^5+2 x^4+18 x^3+25 x^2+41 x+44$
- $y^2=43 x^5+5 x^4+18 x^3+x^2+18$
- and 207 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$| The isogeny class factors as 1.47.am $\times$ 1.47.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{47^{2}}$ is 1.2209.aby 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$ |
Base change
This is a primitive isogeny class.