Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 59 x^{2} )( 1 + 8 x + 59 x^{2} )$ |
$1 + 54 x^{2} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.325650265238$, $\pm0.674349734762$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $161$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3536$ | $12503296$ | $42180127184$ | $146928531902464$ | $511116754290832976$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3590$ | $205380$ | $12125454$ | $714924300$ | $42179720726$ | $2488651484820$ | $146830453333534$ | $8662995818654940$ | $511116755281024550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 161 curves (of which all are hyperelliptic):
- $y^2=41 x^6+49 x^5+51 x^4+17 x^3+41 x^2+3$
- $y^2=x^6+30 x^5+x^4+10 x^3+24 x^2+11 x+47$
- $y^2=2 x^6+x^5+2 x^4+20 x^3+48 x^2+22 x+35$
- $y^2=50 x^6+28 x^5+13 x^3+57 x^2+54 x+35$
- $y^2=41 x^6+56 x^5+26 x^3+55 x^2+49 x+11$
- $y^2=15 x^6+56 x^5+51 x^4+17 x^3+55 x^2+14 x+24$
- $y^2=8 x^6+27 x^5+49 x^4+10 x^3+18 x^2+55 x+32$
- $y^2=48 x^6+36 x^5+8 x^4+12 x^3+7 x^2+4 x+52$
- $y^2=21 x^6+7 x^5+58 x^4+5 x^3+51 x^2+35 x+14$
- $y^2=17 x^6+43 x^5+33 x^4+18 x^3+49 x^2+11 x+22$
- $y^2=34 x^6+27 x^5+7 x^4+36 x^3+39 x^2+22 x+44$
- $y^2=18 x^6+51 x^5+49 x^4+10 x^3+6 x^2+22 x+1$
- $y^2=50 x^6+39 x^5+6 x^4+24 x^3+4 x^2+51 x+31$
- $y^2=41 x^6+19 x^5+12 x^4+48 x^3+8 x^2+43 x+3$
- $y^2=24 x^6+32 x^5+42 x^4+10 x^3+x^2+31 x+15$
- $y^2=48 x^6+5 x^5+25 x^4+20 x^3+2 x^2+3 x+30$
- $y^2=14 x^6+43 x^5+14 x^4+7 x^3+10 x^2+38 x+36$
- $y^2=28 x^6+27 x^5+28 x^4+14 x^3+20 x^2+17 x+13$
- $y^2=40 x^6+53 x^5+36 x^4+45 x^3+57 x^2+16 x+40$
- $y^2=2 x^6+44 x^5+33 x^4+9 x^3+7 x^2+17 x+1$
- and 141 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.ai $\times$ 1.59.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.cc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-43}) \)$)$ |
Base change
This is a primitive isogeny class.