Properties

Label 2.19.ai_cc
Base field $\F_{19}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
L-polynomial:  $( 1 - 4 x + 19 x^{2} )^{2}$
  $1 - 8 x + 54 x^{2} - 152 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.348268167089$, $\pm0.348268167089$
Angle rank:  $1$ (numerical)
Jacobians:  $14$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $256$ $147456$ $49336576$ $17045913600$ $6120359332096$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $12$ $406$ $7188$ $130798$ $2471772$ $47019526$ $893848548$ $16983971038$ $322689770412$ $6131066796406$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19}$.

Endomorphism algebra over $\F_{19}$
The isogeny class factors as 1.19.ae 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-15}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.19.a_w$2$(not in LMFDB)
2.19.i_cc$2$(not in LMFDB)
2.19.e_ad$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.19.a_w$2$(not in LMFDB)
2.19.i_cc$2$(not in LMFDB)
2.19.e_ad$3$(not in LMFDB)
2.19.a_aw$4$(not in LMFDB)
2.19.ae_ad$6$(not in LMFDB)