L(s) = 1 | + 2-s + 4-s + 8-s − 6·9-s + 16-s + 2·17-s − 6·18-s + 8·19-s − 6·25-s + 32-s + 2·34-s − 6·36-s + 8·38-s − 12·41-s − 24·43-s + 49-s − 6·50-s + 8·59-s + 64-s + 24·67-s + 2·68-s − 6·72-s + 4·73-s + 8·76-s + 27·81-s − 12·82-s + 24·83-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.353·8-s − 2·9-s + 1/4·16-s + 0.485·17-s − 1.41·18-s + 1.83·19-s − 6/5·25-s + 0.176·32-s + 0.342·34-s − 36-s + 1.29·38-s − 1.87·41-s − 3.65·43-s + 1/7·49-s − 0.848·50-s + 1.04·59-s + 1/8·64-s + 2.93·67-s + 0.242·68-s − 0.707·72-s + 0.468·73-s + 0.917·76-s + 3·81-s − 1.32·82-s + 2.63·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1812608 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1812608 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.71282024817693675745013733529, −6.94219495068550059915873452189, −6.73763985186732377586137626470, −6.26990474233050369942971608193, −5.70286626752820956259075840901, −5.35539917644036382158361461516, −5.11332775341498038219899119581, −4.77682145642589218436996001225, −3.63026567116244883219000059570, −3.40674497567057131140915818833, −3.36366542167825731325973439863, −2.40395727895840686691357326236, −2.04650857588819893440526220286, −1.08252162774259574666896222029, 0,
1.08252162774259574666896222029, 2.04650857588819893440526220286, 2.40395727895840686691357326236, 3.36366542167825731325973439863, 3.40674497567057131140915818833, 3.63026567116244883219000059570, 4.77682145642589218436996001225, 5.11332775341498038219899119581, 5.35539917644036382158361461516, 5.70286626752820956259075840901, 6.26990474233050369942971608193, 6.73763985186732377586137626470, 6.94219495068550059915873452189, 7.71282024817693675745013733529