Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 14 x + 97 x^{2} )^{2}$ |
$1 + 28 x + 390 x^{2} + 2716 x^{3} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.751640801674$, $\pm0.751640801674$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $62$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $12544$ | $88510464$ | $830547886336$ | $7840765305225216$ | $73740104688111280384$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $126$ | $9406$ | $910014$ | $88566910$ | $8587071486$ | $832972117822$ | $80798308968510$ | $7837433240560894$ | $760231061232421758$ | $73742412687722993086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 62 curves (of which all are hyperelliptic):
- $y^2=71 x^6+28 x^5+38 x^4+35 x^3+38 x^2+28 x+71$
- $y^2=57 x^6+57 x^5+34 x^4+59 x^3+52 x^2+37 x+68$
- $y^2=40 x^6+94 x^5+13 x^4+8 x^3+74 x^2+79 x+38$
- $y^2=5 x^6+83 x^5+26 x^4+78 x^3+26 x^2+83 x+5$
- $y^2=82 x^6+35 x^5+25 x^4+33 x^3+73 x^2+47 x+21$
- $y^2=55 x^6+45 x^5+74 x^4+41 x^3+74 x^2+45 x+55$
- $y^2=4 x^6+88 x^5+6 x^4+19 x^3+27 x^2+36 x+25$
- $y^2=28 x^6+26 x^5+32 x^4+49 x^3+32 x^2+26 x+28$
- $y^2=74 x^6+56 x^5+73 x^4+28 x^3+22 x^2+49 x+88$
- $y^2=11 x^6+82 x^4+82 x^2+11$
- $y^2=4 x^6+52 x^5+72 x^4+54 x^3+72 x^2+52 x+4$
- $y^2=10 x^6+20 x^5+82 x^4+42 x^3+82 x^2+20 x+10$
- $y^2=19 x^6+42 x^4+42 x^2+19$
- $y^2=47 x^6+26 x^5+21 x^4+36 x^3+21 x^2+26 x+47$
- $y^2=25 x^6+20 x^5+83 x^4+7 x^3+83 x^2+20 x+25$
- $y^2=4 x^6+5 x^5+68 x^4+18 x^3+68 x^2+5 x+4$
- $y^2=3 x^6+90 x^4+90 x^2+3$
- $y^2=66 x^6+91 x^5+21 x^4+50 x^3+51 x^2+24 x+24$
- $y^2=37 x^6+52 x^5+40 x^4+26 x^3+40 x^2+52 x+37$
- $y^2=65 x^6+51 x^5+35 x^4+88 x^3+35 x^2+51 x+65$
- and 42 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.o 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.