Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$6400$ |
$64000000$ |
$499340089600$ |
$3937813504000000$ |
$31181149811270560000$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$70$ |
$8078$ |
$708310$ |
$62761758$ |
$5583957350$ |
$496978533038$ |
$44231316403190$ |
$3936588866233918$ |
$350356405958621830$ |
$31181719947090216398$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=11 x^6+73 x^5+15 x^4+35 x^3+60 x^2+11 x+81$
- $y^2=76 x^6+73 x^4+73 x^2+76$
- $y^2=61 x^6+60 x^5+15 x^4+13 x^3+82 x^2+19 x+52$
- $y^2=75 x^6+30 x^5+35 x^4+51 x^3+75 x^2+24 x+75$
- $y^2=35 x^6+78 x^5+29 x^4+58 x^3+88 x^2+39 x+67$
- $y^2=33 x^6+65 x^5+52 x^4+14 x^3+52 x^2+65 x+33$
- $y^2=32 x^6+52 x^5+57 x^4+32 x^3+80 x^2+65 x+16$
- $y^2=81 x^6+78 x^5+85 x^4+75 x^3+8 x^2+45 x+64$
- $y^2=22 x^6+26 x^5+46 x^3+70 x+44$
- $y^2=61 x^6+56 x^5+67 x^4+41 x^3+67 x^2+56 x+61$
- $y^2=24 x^6+72 x^5+3 x^4+21 x^3+23 x^2+49 x+56$
- $y^2=25 x^6+24 x^5+54 x^3+75 x+69$
- $y^2=6 x^6+19 x^5+27 x^4+56 x^3+59 x^2+47 x+53$
- $y^2=29 x^6+86 x^5+87 x^4+77 x^3+32 x^2+33 x+31$
- $y^2=58 x^6+20 x^5+33 x^4+32 x^3+33 x^2+20 x+58$
- $y^2=24 x^6+43 x^5+53 x^4+28 x^3+8 x^2+51 x+61$
- $y^2=68 x^6+19 x^5+64 x^4+36 x^3+21 x^2+51 x+11$
- $y^2=55 x^6+64 x^5+80 x^4+6 x^3+80 x^2+64 x+55$
- $y^2=25 x^6+44 x^5+50 x^4+36 x^3+68 x^2+84 x+82$
- $y^2=77 x^6+36 x^5+73 x^4+42 x^3+73 x^2+36 x+77$
- and 60 more
- $y^2=15 x^6+53 x^5+68 x^4+43 x^3+73 x^2+79 x+6$
- $y^2=66 x^6+3 x^5+69 x^4+86 x^3+69 x^2+84 x+7$
- $y^2=40 x^6+17 x^5+8 x^4+32 x^3+63 x^2+19 x+27$
- $y^2=54 x^6+39 x^5+59 x^4+82 x^3+12 x^2+81 x+77$
- $y^2=3 x^6+10 x^5+18 x^4+18 x^3+29 x^2+42 x$
- $y^2=67 x^6+62 x^5+35 x^4+23 x^3+46 x^2+47 x+62$
- $y^2=74 x^6+65 x^5+60 x^4+23 x^3+19 x^2+86 x+30$
- $y^2=13 x^5+9 x^4+35 x^3+57 x^2+36 x+69$
- $y^2=25 x^6+43 x^5+65 x^4+70 x^3+80 x^2+70 x+59$
- $y^2=69 x^6+19 x^4+19 x^2+69$
- $y^2=24 x^6+37 x^5+13 x^4+48 x^3+13 x^2+37 x+24$
- $y^2=74 x^6+81 x^5+85 x^4+64 x^3+32 x^2+56 x+59$
- $y^2=68 x^6+19 x^5+72 x^4+10 x^3+32 x^2+51 x+78$
- $y^2=17 x^6+55 x^5+85 x^4+84 x^3+9 x^2+17 x+8$
- $y^2=59 x^6+62 x^5+32 x^4+83 x^3+47 x^2+28 x+14$
- $y^2=74 x^6+17 x^5+77 x^4+22 x^3+33 x^2+34 x+38$
- $y^2=81 x^6+64 x^4+64 x^2+81$
- $y^2=11 x^6+68 x^5+x^4+74 x^3+x^2+68 x+11$
- $y^2=7 x^6+82 x^5+31 x^4+43 x^3+35 x^2+66 x+3$
- $y^2=80 x^6+x^5+60 x^4+19 x^3+83 x^2+81 x+64$
- $y^2=11 x^6+72 x^5+8 x^4+43 x^3+8 x^2+72 x+11$
- $y^2=76 x^6+7 x^5+32 x^4+40 x^3+32 x^2+7 x+76$
- $y^2=74 x^6+7 x^5+51 x^4+29 x^3+5 x^2+83 x+62$
- $y^2=68 x^6+74 x^5+36 x^4+72 x^3+36 x^2+74 x+68$
- $y^2=41 x^6+66 x^5+13 x^4+19 x^3+56 x^2+24 x+58$
- $y^2=32 x^6+79 x^5+44 x^4+49 x^3+25 x^2+9 x+16$
- $y^2=81 x^6+77 x^5+85 x^4+71 x^3+81 x^2+43 x+79$
- $y^2=55 x^6+51 x^5+73 x^4+51 x^3+30 x^2+19 x+59$
- $y^2=51 x^6+50 x^5+12 x^4+80 x^3+52 x^2+85 x+3$
- $y^2=3 x^6+82 x^4+82 x^2+3$
- $y^2=56 x^6+51 x^5+39 x^4+35 x^3+39 x^2+51 x+56$
- $y^2=11 x^6+61 x^5+66 x^4+24 x^3+64 x^2+47 x+68$
- $y^2=14 x^6+43 x^5+71 x^4+18 x^3+58 x^2+19 x+18$
- $y^2=49 x^6+78 x^5+41 x^4+48 x^3+3 x^2+48 x+52$
- $y^2=57 x^6+21 x^5+5 x^4+18 x^3+5 x^2+21 x+57$
- $y^2=49 x^6+17 x^5+15 x^4+7 x^3+43 x^2+42 x+57$
- $y^2=65 x^5+7 x^4+5 x^3+7 x^2+65 x$
- $y^2=61 x^6+41 x^5+7 x^4+19 x^3+48 x^2+72 x+84$
- $y^2=29 x^6+56 x^4+7 x^3+56 x^2+29$
- $y^2=27 x^6+30 x^5+76 x^4+14 x^3+43 x^2+37 x+48$
- $y^2=28 x^6+40 x^5+55 x^4+12 x^3+55 x^2+40 x+28$
- $y^2=51 x^5+74 x^4+59 x^3+74 x^2+51 x$
- $y^2=31 x^6+47 x^4+47 x^2+31$
- $y^2=2 x^6+79 x^5+39 x^4+14 x^3+39 x^2+79 x+2$
- $y^2=63 x^6+49 x^4+49 x^2+63$
- $y^2=29 x^6+83 x^5+16 x^4+36 x^3+16 x^2+83 x+29$
- $y^2=27 x^6+64 x^5+45 x^4+54 x^3+44 x^2+20 x+50$
- $y^2=72 x^6+62 x^5+70 x^4+41 x^3+62 x^2+84 x+26$
- $y^2=59 x^6+66 x^5+24 x^4+72 x^3+41 x^2+86 x+62$
- $y^2=3 x^6+39 x^5+35 x^4+87 x^3+54 x^2+57 x+12$
- $y^2=82 x^6+18 x^5+15 x^4+77 x^3+19 x^2+64 x+5$
- $y^2=46 x^5+66 x^4+84 x^3+53 x^2+18 x+85$
- $y^2=70 x^6+43 x^5+27 x^4+8 x^3+63 x^2+66 x+52$
- $y^2=73 x^6+42 x^5+80 x^4+72 x^3+26 x^2+47 x+64$
- $y^2=51 x^6+43 x^5+54 x^4+61 x^3+22 x^2+12 x+45$
- $y^2=46 x^6+45 x^4+45 x^2+46$
- $y^2=35 x^6+85 x^5+43 x^4+79 x^3+59 x^2+2 x+6$
- $y^2=12 x^6+71 x^5+71 x^4+14 x^3+81 x^2+36 x+19$
- $y^2=69 x^6+28 x^5+80 x^4+87 x^3+60 x^2+13 x+52$
- $y^2=51 x^6+62 x^5+26 x^4+31 x^3+40 x^2+76 x+57$
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$
Base change
This is a primitive isogeny class.
Twists