Properties

Label 2.67.ay_ks
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 67 x^{2} )^{2}$
  $1 - 24 x + 278 x^{2} - 1608 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.238111713333$, $\pm0.238111713333$
Angle rank:  $1$ (numerical)
Jacobians:  $39$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3136$ $20070400$ $90870896704$ $406425600000000$ $1823001737727585856$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $44$ $4470$ $302132$ $20168878$ $1350246524$ $90458649510$ $6060706678532$ $406067600523358$ $27206533801990604$ $1822837802581339350$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 39 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.am 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-31}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.a_ak$2$(not in LMFDB)
2.67.y_ks$2$(not in LMFDB)
2.67.m_cz$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.a_ak$2$(not in LMFDB)
2.67.y_ks$2$(not in LMFDB)
2.67.m_cz$3$(not in LMFDB)
2.67.a_k$4$(not in LMFDB)
2.67.am_cz$6$(not in LMFDB)