Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 67 x^{2} )^{2}$ |
| $1 - 24 x + 278 x^{2} - 1608 x^{3} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.238111713333$, $\pm0.238111713333$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $39$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3136$ | $20070400$ | $90870896704$ | $406425600000000$ | $1823001737727585856$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $44$ | $4470$ | $302132$ | $20168878$ | $1350246524$ | $90458649510$ | $6060706678532$ | $406067600523358$ | $27206533801990604$ | $1822837802581339350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 39 curves (of which all are hyperelliptic):
- $y^2=8 x^6+10 x^5+42 x^4+35 x^3+4 x^2+35 x+17$
- $y^2=58 x^6+24 x^5+28 x^4+5 x^3+28 x^2+24 x+58$
- $y^2=16 x^5+38 x^4+40 x^3+61 x^2+21 x$
- $y^2=19 x^5+32 x^4+16 x^3+32 x^2+19 x$
- $y^2=18 x^6+29 x^5+65 x^4+25 x^3+65 x^2+29 x+18$
- $y^2=29 x^6+54 x^5+19 x^4+17 x^3+15 x^2+55 x+29$
- $y^2=66 x^6+21 x^4+21 x^2+66$
- $y^2=40 x^6+42 x^5+50 x^4+47 x^3+7 x^2+31 x+22$
- $y^2=21 x^6+34 x^5+42 x^4+16 x^3+42 x^2+34 x+21$
- $y^2=3 x^6+22 x^5+28 x^4+43 x^3+28 x^2+22 x+3$
- $y^2=55 x^6+41 x^5+44 x^4+32 x^3+44 x^2+41 x+55$
- $y^2=2 x^6+30 x^5+62 x^4+28 x^3+4 x^2+46 x+44$
- $y^2=11 x^6+28 x^4+28 x^2+11$
- $y^2=36 x^6+16 x^5+15 x^4+30 x^3+59 x^2+47 x+26$
- $y^2=42 x^6+66 x^4+66 x^2+42$
- $y^2=x^6+34 x^5+17 x^4+4 x^3+22 x^2+53 x+15$
- $y^2=32 x^6+7 x^5+15 x^4+3 x^3+15 x^2+7 x+32$
- $y^2=30 x^6+57 x^5+66 x^4+61 x^3+7 x^2+46 x+28$
- $y^2=2 x^6+26 x^5+52 x^4+65 x^3+52 x^2+26 x+2$
- $y^2=48 x^6+4 x^5+55 x^4+13 x^3+51 x^2+39 x+1$
- and 19 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.am 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-31}) \)$)$ |
Base change
This is a primitive isogeny class.