L(s) = 1 | + 2·3-s − 4·7-s + 3·9-s + 8·19-s − 8·21-s + 10·25-s + 4·27-s + 12·29-s + 8·31-s + 4·37-s + 9·49-s + 12·53-s + 16·57-s − 24·59-s − 12·63-s + 20·75-s + 5·81-s − 24·83-s + 24·87-s + 16·93-s + 8·103-s + 20·109-s + 8·111-s − 12·113-s + 10·121-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1.51·7-s + 9-s + 1.83·19-s − 1.74·21-s + 2·25-s + 0.769·27-s + 2.22·29-s + 1.43·31-s + 0.657·37-s + 9/7·49-s + 1.64·53-s + 2.11·57-s − 3.12·59-s − 1.51·63-s + 2.30·75-s + 5/9·81-s − 2.63·83-s + 2.57·87-s + 1.65·93-s + 0.788·103-s + 1.91·109-s + 0.759·111-s − 1.12·113-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.585288842\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.585288842\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.685655751263249332963238057555, −9.568643256849823276027679515763, −8.864708976858723629115865537626, −8.689392078371401087606454770318, −8.397322514506065506757076552641, −7.76389343309206783142513694930, −7.32266435498185824988879637100, −7.09032917530441536565083679303, −6.54838997651263044106696991714, −6.26919411558892164731975585657, −5.76789264875777573192831545185, −5.09512361843874800711381336554, −4.49954553914434106491641236958, −4.40513414259135913602186157410, −3.34172226865863097934788458035, −3.24539867835608346879653980384, −2.81159075764828032651757567741, −2.47871467731910494702923127244, −1.27635779146320750506969557981, −0.837235830123698425905546974489,
0.837235830123698425905546974489, 1.27635779146320750506969557981, 2.47871467731910494702923127244, 2.81159075764828032651757567741, 3.24539867835608346879653980384, 3.34172226865863097934788458035, 4.40513414259135913602186157410, 4.49954553914434106491641236958, 5.09512361843874800711381336554, 5.76789264875777573192831545185, 6.26919411558892164731975585657, 6.54838997651263044106696991714, 7.09032917530441536565083679303, 7.32266435498185824988879637100, 7.76389343309206783142513694930, 8.397322514506065506757076552641, 8.689392078371401087606454770318, 8.864708976858723629115865537626, 9.568643256849823276027679515763, 9.685655751263249332963238057555