Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 12 x + 59 x^{2} )^{2}$ |
$1 + 24 x + 262 x^{2} + 1416 x^{3} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.785358177425$, $\pm0.785358177425$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $33$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5184$ | $11943936$ | $42018440256$ | $146982840827904$ | $511042308084661824$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $3430$ | $204588$ | $12129934$ | $714820164$ | $42181041526$ | $2488651534236$ | $146830407046174$ | $8662996182437172$ | $511116750738185350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 33 curves (of which all are hyperelliptic):
- $y^2=22 x^6+11 x^5+24 x^4+43 x^3+13 x^2+40 x+4$
- $y^2=49 x^6+40 x^5+5 x^4+58 x^3+7 x^2+43 x+41$
- $y^2=31 x^6+25 x^5+23 x^4+24 x^3+23 x^2+25 x+31$
- $y^2=46 x^6+30 x^5+43 x^4+7 x^3+13 x^2+47 x+12$
- $y^2=56 x^6+24 x^5+42 x^4+45 x^3+42 x^2+24 x+56$
- $y^2=38 x^6+23 x^5+58 x^4+47 x^3+58 x^2+23 x+38$
- $y^2=21 x^6+6 x^5+27 x^4+44 x^3+21 x^2+8 x+48$
- $y^2=57 x^6+13 x^5+57 x^4+38 x^3+19 x^2+8 x+48$
- $y^2=49 x^6+34 x^5+14 x^4+19 x^3+14 x^2+34 x+49$
- $y^2=30 x^6+17 x^5+16 x^4+27 x^3+16 x^2+17 x+30$
- $y^2=14 x^6+56 x^4+56 x^2+14$
- $y^2=26 x^6+15 x^5+27 x^4+27 x^3+29 x^2+36 x+29$
- $y^2=25 x^6+29 x^5+58 x^4+3 x^3+32 x^2+19 x+15$
- $y^2=33 x^6+23 x^5+13 x^4+30 x^3+13 x^2+23 x+33$
- $y^2=49 x^6+29 x^5+30 x^4+46 x^3+30 x^2+29 x+49$
- $y^2=57 x^6+3 x^5+13 x^4+27 x^3+37 x^2+25 x+4$
- $y^2=35 x^6+53 x^5+47 x^4+22 x^3+47 x^2+53 x+35$
- $y^2=19 x^6+31 x^4+31 x^2+19$
- $y^2=29 x^6+7 x^5+55 x^3+16 x+49$
- $y^2=8 x^5+14 x^4+55 x^3+38 x^2+18 x$
- and 13 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.m 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-23}) \)$)$ |
Base change
This is a primitive isogeny class.