Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 74 x^{2} + 1849 x^{4}$ |
| Frobenius angles: | $\pm0.0850865380712$, $\pm0.914913461929$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{10})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $26$ |
| Isomorphism classes: | 152 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1776$ | $3154176$ | $6321368304$ | $11676053016576$ | $21611482575617136$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $44$ | $1702$ | $79508$ | $3415246$ | $147008444$ | $6321373558$ | $271818611108$ | $11688207630238$ | $502592611936844$ | $21611482837950022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=18 x^6+20 x^5+34 x^4+41 x^3+14 x^2+25 x+16$
- $y^2=x^6+7 x^3+42$
- $y^2=17 x^6+3 x^5+39 x^4+10 x^3+41 x^2+33 x+29$
- $y^2=19 x^6+29 x^5+x^4+23 x^3+35 x^2+31 x+26$
- $y^2=33 x^6+5 x^4+9 x^3+5 x^2+12 x+25$
- $y^2=34 x^6+19 x^5+23 x^4+24 x^3+20 x^2+19 x+9$
- $y^2=34 x^6+17 x^5+20 x^4+20 x^3+19 x^2+29 x+12$
- $y^2=16 x^6+8 x^5+17 x^4+17 x^3+14 x^2+x+36$
- $y^2=38 x^5+34 x^4+20 x^3+22 x^2+23 x+22$
- $y^2=x^6+3 x^3+27$
- $y^2=25 x^6+15 x^5+40 x^4+19 x^3+26 x^2+23 x+7$
- $y^2=x^6+20 x^3+2$
- $y^2=14 x^5+20 x^4+25 x^3+38 x^2+18 x+28$
- $y^2=x^6+x^3+42$
- $y^2=41 x^6+21 x^5+40 x^4+16 x^3+37 x^2+34 x+20$
- $y^2=x^6+12 x^3+8$
- $y^2=9 x^6+x^5+41 x^4+30 x^3+28 x^2+32 x+31$
- $y^2=37 x^6+7 x^5+31 x^4+3 x^3+6 x^2+10 x+32$
- $y^2=x^6+33 x^3+32$
- $y^2=18 x^6+38 x^5+40 x^4+35 x^3+7 x^2+35 x+27$
- $y^2=14 x^6+33 x^5+20 x^4+19 x^3+17 x^2+26 x+19$
- $y^2=21 x^6+9 x^4+22 x^3+27 x^2+28 x+23$
- $y^2=5 x^6+7 x^5+6 x^4+2 x^3+18 x^2+20 x+6$
- $y^2=28 x^6+5 x^5+42 x^4+23 x^3+26 x^2+38 x+16$
- $y^2=40 x^6+30 x^5+40 x^4+18 x^3+28 x^2+19 x+12$
- $y^2=19 x^6+31 x^5+12 x^4+22 x^3+23 x^2+24 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{10})\). |
| The base change of $A$ to $\F_{43^{2}}$ is 1.1849.acw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-30}) \)$)$ |
Base change
This is a primitive isogeny class.